The limit solutions of the difference-difference KdV equation

被引:4
作者
Chen, Peng [1 ]
Wang, Guang-sheng [1 ]
Zhang, Da-jun [1 ]
机构
[1] Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China
基金
中国国家自然科学基金;
关键词
MULTIPLE-POLE SOLUTIONS; DE-VRIES EQUATION; BACKLUND TRANSFORMATION; MULTISOLITON SOLUTIONS; SOLITON-SOLUTIONS;
D O I
10.1016/j.chaos.2007.07.072
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper describes ail exact limit procedure by which a simple formula for the N-double-pole solution to the difference-difference KdV equation is derived from its 2N-soliton solution in Hirota's form. This limit procedure is general and call apply to other soliton equations with multi-soliton solutions in Hirota's form. (C) 2007 Elsevier Ltd. All rights reserved,
引用
收藏
页码:376 / 381
页数:6
相关论文
共 50 条
  • [21] Multiple-soliton solutions of the perturbed KdV equation
    Wazwaz, Abdul-Majid
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2010, 15 (11) : 3270 - 3273
  • [22] Some exact solutions of KdV equation with variable coefficients
    Latif, M. S. Abdel
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2011, 16 (04) : 1783 - 1786
  • [23] Numerical. realizations of solutions of the stochastic KdV equation
    Herman, Russell L.
    Rose, Andrew
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2009, 80 (01) : 164 - 172
  • [24] DISPERSIVE DECAY OF SMALL DATA SOLUTIONS FOR THE KDV EQUATION
    Ifrim, Mihaela
    Koch, Herbert
    Tataru, Daniel
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2023, 56 (06): : 1709 - 1746
  • [25] Decay Mode Solutions for the Supersymmetric Cylindrical KdV Equation
    Deng, Shufang
    Qin, Weili
    Xu, Guiqiong
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2016, 71 (07): : 577 - 581
  • [26] The quasi-periodic solutions for the supersymmetric variable-coefficient KdV equation
    Dong, Chao
    Deng, Shu-Fang
    MODERN PHYSICS LETTERS B, 2020, 34 (16):
  • [27] Characterization of rational solutions of a KdV-like equation
    Campos, Brian D. Vasquez
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2022, 201 : 396 - 416
  • [28] Bilinearization and Soliton Solutions of the Supersymmetric Coupled KdV Equation
    Mirza, A.
    ul Hassan, M.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2020, 202 (01) : 11 - 16
  • [29] Finite difference scheme for a higher order nonlinear Schrodinger equation
    Cavalcanti, Marcelo M.
    Correa, Wellington J.
    Sepulveda, Mauricio A. C.
    Vejar-Asem, Rodrigo
    CALCOLO, 2019, 56 (04)
  • [30] The generalized Wronskian solutions of a inverse KdV hierarchy
    Liu, YuQing
    Chen, DengYuan
    Hu, Chao
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 218 (05) : 2025 - 2035