The nature of chlorine-inhibition of photocatalytic degradation of dichloroacetic acid in a TiO2-based microreactor

被引:86
作者
Krivec, M. [1 ,2 ]
Dillert, R. [3 ]
Bahnemann, D. W. [3 ]
Mehle, A. [1 ]
Strancar, J. [1 ]
Drazic, G. [1 ,2 ,4 ]
机构
[1] Jozef Stefan Inst, SI-1000 Ljubljana, Slovenia
[2] Jozef Stefan Int Postgrad Sch, SI-1000 Ljubljana, Slovenia
[3] Leibniz Univ Hannover, Inst Tech Chem, D-30167 Hannover, Germany
[4] Natl Inst Chem, SI-1000 Ljubljana, Slovenia
关键词
RATE ENHANCEMENT; INORGANIC-IONS; TIO2; OXIDATION; RADICALS; REACTOR;
D O I
10.1039/c4cp01043d
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Photocatalytic degradation of dichloroacetic acid (DCA) was studied in a continuous-flow set-up using a titanium microreactor with an immobilized double-layered TiO2 nanoparticle/nanotube film. Chloride ions, formed during the degradation process, negatively affect the photocatalytic efficiency and at a certain concentration (approximately 0.5 mM) completely stop the reaction in the microreactor. Two proposed mechanisms of inhibition with chloride ions, competitive adsorption and photogenerated-hole scavenging, have been proposed and investigated by adsorption isotherms and electron paramagnetic resonance (EPR) measurements. The results show that chloride ions block the DCA adsorption sites on the titania surface and reduce the amount of adsorbed DCA molecules. The scavenging effect of chloride ions during photocatalysis through the formation of chlorine radicals was not detected.
引用
收藏
页码:14867 / 14873
页数:7
相关论文
共 22 条
[1]   Photodestruction of dichloroacetic acid catalyzed by nano-sized TiO2 particles [J].
Bahnemanna, DW ;
Kholuiskaya, SN ;
Dillert, R ;
Kulak, AI ;
Kokorin, AI .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2002, 36 (02) :161-169
[2]   Photocatalytic transformation of organic compounds in the presence of inorganic ions [J].
Calza, P ;
Pelizzetti, E .
PURE AND APPLIED CHEMISTRY, 2001, 73 (12) :1839-1848
[3]   Inhibition of the adsorption and photocatalytic degradation of an organic contaminant in an aqueous suspension of TiO2 by inorganic ions [J].
Chen, HY ;
Zahraa, O ;
Bouchy, M .
JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY, 1997, 108 (01) :37-44
[4]  
De Lasa H. I., 2005, PHOTOCATAL REACT ENG, DOI DOI 10.1007/0-387-27591-6_8
[5]   TiO2 photocatalysis and related surface phenomena [J].
Fujishima, Akira ;
Zhang, Xintong ;
Tryk, Donald A. .
SURFACE SCIENCE REPORTS, 2008, 63 (12) :515-582
[6]   Why inorganic salts decrease the TiO2 photocatalytic efficiency [J].
Guillard, C ;
Puzenat, E ;
Lachheb, H ;
Houas, A ;
Herrmann, JM .
INTERNATIONAL JOURNAL OF PHOTOENERGY, 2005, 7 (01) :1-9
[7]   ENVIRONMENTAL APPLICATIONS OF SEMICONDUCTOR PHOTOCATALYSIS [J].
HOFFMANN, MR ;
MARTIN, ST ;
CHOI, WY ;
BAHNEMANN, DW .
CHEMICAL REVIEWS, 1995, 95 (01) :69-96
[8]   SPIN TRAPPING AZIDYL (N3.), CYANATYL (OCN.), CYANYL (.CN) RADICALS, AND CHLORINE ATOM (CL.) [J].
JANZEN, EG ;
STRONKS, HJ ;
NUTTER, DE ;
DAVIS, ER ;
BLOUNT, HN ;
POYER, JL ;
MCCAY, PB .
CANADIAN JOURNAL OF CHEMISTRY-REVUE CANADIENNE DE CHIMIE, 1980, 58 (15) :1596-1598
[9]   Parameters effect on heterogeneous photocatalysed degradation of phenol in aqueous dispersion of TiO2 [J].
Kashif, Naeem ;
Ouyang Feng .
JOURNAL OF ENVIRONMENTAL SCIENCES, 2009, 21 (04) :527-533
[10]   Highly Efficient TiO2-Based Microreactor for Photocatalytic Applications [J].
Krivec, Matic ;
Zagar, Kristina ;
Suhadolnik, Luka ;
Ceh, Miran ;
Drazic, Goran .
ACS APPLIED MATERIALS & INTERFACES, 2013, 5 (18) :9088-9094