Regional heritability advanced complex trait analysis for GPU and traditional parallel architectures

被引:14
作者
Cebamanos, L. [1 ]
Gray, A. [1 ]
Stewart, I. [2 ]
Tenesa, A. [2 ]
机构
[1] Univ Edinburgh, EPCC, Edinburgh, Midlothian, Scotland
[2] Univ Edinburgh, Roslin Inst, Edinburgh, Midlothian, Scotland
基金
英国生物技术与生命科学研究理事会;
关键词
D O I
10.1093/bioinformatics/btt754
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation:Quantification of the contribution of genetic variation to phenotypic variation for complex traits becomes increasingly computationally demanding with increasing numbers of single-nucleotide polymorphisms and individuals. To meet the challenges in making feasible large-scale studies, we present the REgional heritability advanced complex trait analysis software. Adapted from advanced complex trait analysis (and, in turn, genome-wide complex trait analysis), it is tailored to exploit the parallelism present in modern traditional and graphics processing unit (GPU)-accelerated machines, from workstations to supercomputers. Results: We adapt the genetic relationship matrix estimation algorithm to remove limitations on memory, allowing the analysis of large datasets. We build on this to develop a version of the code able to efficiently exploit GPU-accelerated systems for both the genetic relationship matrix andREstrictedmaximumlikelihood (REML) parts of the analysis, offering substantial speedup over the traditional central processing unit version. We develop the ability to analyze multiple small regions of the genome across multiple compute nodes in parallel, following the 'regional heritability' approach. We demonstrate the new software using 1024 GPUs in parallel on one of the world's fastest supercomputers.
引用
收藏
页码:1177 / 1179
页数:3
相关论文
共 5 条
[1]   Numerical linear algebra on emerging architectures: the PLASMA and MAGMA projects [J].
Agullo, Emmanuel ;
Demmel, Jim ;
Dongarra, Jack ;
Hadri, Bilel ;
Kurzak, Jakub ;
Langou, Julien ;
Ltaief, Hatem ;
Luszczek, Piotr ;
Tomov, Stanimire .
SCIDAC 2009: SCIENTIFIC DISCOVERY THROUGH ADVANCED COMPUTING, 2009, 180
[2]   Advanced Complex Trait Analysis [J].
Gray, A. ;
Stewart, I. ;
Tenesa, A. .
BIOINFORMATICS, 2012, 28 (23) :3134-3136
[3]   A powerful and efficient set test for genetic markers that handles confounders [J].
Listgarten, Jennifer ;
Lippert, Christoph ;
Kang, Eun Yong ;
Xiang, Jing ;
Kadie, Carl M. ;
Heckerman, David .
BIOINFORMATICS, 2013, 29 (12) :1526-1533
[4]   Localising Loci underlying Complex Trait Variation Using Regional Genomic Relationship Mapping [J].
Nagamine, Yoshitaka ;
Pong-Wong, Ricardo ;
Navarro, Pau ;
Vitart, Veronique ;
Hayward, Caroline ;
Rudan, Igor ;
Campbell, Harry ;
Wilson, James ;
Wild, Sarah ;
Hicks, Andrew A. ;
Pramstaller, Peter P. ;
Hastie, Nicholas ;
Wright, Alan F. ;
Haley, Chris S. .
PLOS ONE, 2012, 7 (10)
[5]   GCTA: A Tool for Genome-wide Complex Trait Analysis [J].
Yang, Jian ;
Lee, S. Hong ;
Goddard, Michael E. ;
Visscher, Peter M. .
AMERICAN JOURNAL OF HUMAN GENETICS, 2011, 88 (01) :76-82