Solvothermal synthesis of V2O5/graphene nanocomposites for high performance lithium ion batteries

被引:61
|
作者
Chen, Da [1 ]
Yi, Ran [1 ]
Chen, Shuru [1 ]
Xu, Terrence [1 ]
Gordin, Mikhail L. [1 ]
Lv, Dongping [1 ]
Wang, Donghai [1 ]
机构
[1] Penn State Univ, Dept Mech & Nucl Engn, University Pk, PA 16802 USA
来源
MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS | 2014年 / 185卷
关键词
V2O5; nanoparticles; Graphene nanosheets; Solvothermal synthesis; Electrochemical performance; Lithium ion batteries; VANADIUM-OXIDE; FUNCTIONALIZED GRAPHENE; CATHODE MATERIALS; STORAGE CAPACITY; ELECTRODES; V2O5; INTERCALATION; COMPOSITES; INSERTION; ANODE;
D O I
10.1016/j.mseb.2014.01.015
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this work, V2O5/graphene nanocomposites have been synthesized by a facile solvothermal approach. The V2O5 nanoparticles, around 20-40 nm in size, were encapsulated in the 2D graphene matrix. The reversible Li-cycling properties of V2O5/graphene have been evaluated by galvanostatic discharge-charge cycling, cyclic voltammetry, and impedance spectroscopy. Compared with the bare V2O5 nanopartides, the V2O5/graphene nanocomposites exhibited enhanced electrochemical performance with higher reversible capacity and improved cycling stability and rate capability. The graphene nanosheets act not only as an electronically conductive matrix to improve the electronic and ionic conductivity of the composite electrode, but also as a flexible buffer matrix to maintain the structural integrity of the composite electrodes by preventing particle agglomeration, thus leading to the improvement of the electrochemical performance of V2O5. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:7 / 12
页数:6
相关论文
共 50 条
  • [21] V2O5 nanostructure arrays: controllable synthesis and performance as cathodes for lithium ion batteries
    Yu, Xiaoyou
    Lu, Zhiyi
    Zhang, Guoxin
    Lei, Xiaodong
    Liu, Junfeng
    Wang, Li
    Sun, Xiaoming
    RSC ADVANCES, 2013, 3 (43) : 19937 - 19941
  • [22] Facile Synthesis of V2O5 Hollow Spheres as Advanced Cathodes for High-Performance Lithium-Ion Batteries
    Zhang, Xingyuan
    Wang, Jian-Gan
    Liu, Huanyan
    Liu, Hongzhen
    Wei, Bingqing
    MATERIALS, 2017, 10 (01)
  • [23] Carbon nanocage supported synthesis of V2O5 nanorods and V2O5/TiO2 nanocomposites for Li-ion batteries
    Armstrong, Mark J.
    Burke, David M.
    Gabriel, Timothy
    O'Regan, Colm
    O'Dwyer, Colm
    Petkov, Nikolay
    Holmes, Justin D.
    JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (40) : 12568 - 12578
  • [24] Rational design of V2O5 nanorod anchored carbon microsphere cathode materials for improved-performance lithium-ion batteries
    Hu, Bingbing
    Jiang, Jiayu
    Deng, Yu
    Li, Dongshan
    Yang, Xinyao
    Du, Tianlun
    Zhao, Yingyang
    Zhou, Zideng
    Zou, Ye
    Pu, Hong
    Ma, Guangqiang
    IONICS, 2024, 30 (07) : 3831 - 3841
  • [25] Facile synthesis of V2O5 nanoparticles as a capable cathode for high energy lithium-ion batteries
    Zhu, Kai
    Meng, Yuan
    Qiu, Hailong
    Gao, Yu
    Wang, Chunzhong
    Du, Fei
    Wei, Yingjin
    Chen, Gang
    Wang, Chunzhong
    Chen, Gang
    JOURNAL OF ALLOYS AND COMPOUNDS, 2015, 650 : 370 - 373
  • [26] Controllable Preparation of V2O5 Hollow Microspheres as Cathode Materials for Lithium-Ion Batteries
    An, Xinxin
    Su, Qiong
    Liu, Yanglin
    Pan, Anqiang
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2017, 12 (07): : 6885 - 6894
  • [27] Combustion synthesis of MgFe2O4/graphene nanocomposite as a high-performance negative electrode for lithium ion batteries
    Rai, Alok Kumar
    Trang Vu Thi
    Gim, Jihyeon
    Kim, Jaekook
    MATERIALS CHARACTERIZATION, 2014, 95 : 259 - 265
  • [28] Preparation of V2O5 porous microstructures with enhanced performances of lithium ion batteries
    Dong, Xuelu
    Dong, Fangyuan
    Zhang, Yuting
    Fu, Chonggang
    Cui, Chuansheng
    Wang, Lei
    Zeng, Suyuan
    MATERIALS CHEMISTRY AND PHYSICS, 2022, 277
  • [29] Electrochemical performance of the nanostructured biotemplated V2O5 cathode for lithium-ion batteries
    Pomerantseva, Ekaterina
    Gerasopoulos, Konstantinos
    Chen, Xinyi
    Rubloff, Gary
    Ghodssi, Reza
    JOURNAL OF POWER SOURCES, 2012, 206 : 282 - 287
  • [30] Encapsulating V2O5 into carbon nanotubes enables the synthesis of flexible high-performance lithium ion batteries
    Kong, Debin
    Li, Xianglong
    Zhang, Yunbo
    Hai, Xiao
    Wang, Bin
    Qiu, Xiongying
    Song, Qi
    Yang, Quan-Hong
    Zhi, Linjie
    ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9 (03) : 906 - 911