Solvothermal synthesis of V2O5/graphene nanocomposites for high performance lithium ion batteries

被引:63
作者
Chen, Da [1 ]
Yi, Ran [1 ]
Chen, Shuru [1 ]
Xu, Terrence [1 ]
Gordin, Mikhail L. [1 ]
Lv, Dongping [1 ]
Wang, Donghai [1 ]
机构
[1] Penn State Univ, Dept Mech & Nucl Engn, University Pk, PA 16802 USA
来源
MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS | 2014年 / 185卷
关键词
V2O5; nanoparticles; Graphene nanosheets; Solvothermal synthesis; Electrochemical performance; Lithium ion batteries; VANADIUM-OXIDE; FUNCTIONALIZED GRAPHENE; CATHODE MATERIALS; STORAGE CAPACITY; ELECTRODES; V2O5; INTERCALATION; COMPOSITES; INSERTION; ANODE;
D O I
10.1016/j.mseb.2014.01.015
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this work, V2O5/graphene nanocomposites have been synthesized by a facile solvothermal approach. The V2O5 nanoparticles, around 20-40 nm in size, were encapsulated in the 2D graphene matrix. The reversible Li-cycling properties of V2O5/graphene have been evaluated by galvanostatic discharge-charge cycling, cyclic voltammetry, and impedance spectroscopy. Compared with the bare V2O5 nanopartides, the V2O5/graphene nanocomposites exhibited enhanced electrochemical performance with higher reversible capacity and improved cycling stability and rate capability. The graphene nanosheets act not only as an electronically conductive matrix to improve the electronic and ionic conductivity of the composite electrode, but also as a flexible buffer matrix to maintain the structural integrity of the composite electrodes by preventing particle agglomeration, thus leading to the improvement of the electrochemical performance of V2O5. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:7 / 12
页数:6
相关论文
共 40 条
[1]   Self-assembled vanadium pentoxide (V2O5) hollow microspheres from nanorods and their application in lithium-ion batteries [J].
Cao, AM ;
Hu, JS ;
Liang, HP ;
Wan, LJ .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2005, 44 (28) :4391-4395
[2]   Fast, completely reversible Li insertion in vanadium pentoxide nanoribbons [J].
Chan, Candace K. ;
Peng, Hailin ;
Twesten, Ray D. ;
Jarausch, Konrad ;
Zhang, Xiao Feng ;
Cui, Yi .
NANO LETTERS, 2007, 7 (02) :490-495
[3]   Graphene-based materials in electrochemistry [J].
Chen, Da ;
Tang, Longhua ;
Li, Jinghong .
CHEMICAL SOCIETY REVIEWS, 2010, 39 (08) :3157-3180
[4]   Graphene-V2O5•nH2O xerogel composite cathodes for lithium ion batteries [J].
Du, Guodong ;
Seng, Kuok Hau ;
Guo, Zaiping ;
Liu, Jun ;
Li, Wenxian ;
Jia, Dianzeng ;
Cook, Chris ;
Liu, Zongwen ;
Liu, Huakun .
RSC ADVANCES, 2011, 1 (04) :690-697
[5]   Recent developments in cathode materials for lithium ion batteries [J].
Fergus, Jeffrey W. .
JOURNAL OF POWER SOURCES, 2010, 195 (04) :939-954
[6]   Synthesis of hierarchically mesoporous anatase spheres and their application in lithium batteries [J].
Guo, Yu-Guo ;
Hu, Yong-Sheng ;
Maier, Joachim .
CHEMICAL COMMUNICATIONS, 2006, (26) :2783-2785
[7]   Flexible energy storage devices based on graphene paper [J].
Gwon, Hyeokjo ;
Kim, Hyun-Suk ;
Lee, Kye Ung ;
Seo, Dong-Hwa ;
Park, Yun Chang ;
Lee, Yun-Sung ;
Ahn, Byung Tae ;
Kang, Kisuk .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (04) :1277-1283
[8]   Synthesis and Electrode Performance of Nanostructured V2O5 by Using a Carbon Tube-in-Tube as a Nanoreactor and an Efficient Mixed-Conducting Network [J].
Hu, Yong-Sheng ;
Liu, Xi ;
Mueller, Jens-O. ;
Schloegl, Robert ;
Maier, Joachim ;
Su, Dang Sheng .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2009, 48 (01) :210-214
[9]   The study of carbon-coated V2O5 nanoparticles as a potential cathodic material for Li rechargeable batteries [J].
Koltypin, Maxim ;
Pol, Vilas ;
Gedanken, Aharon ;
Aurbach, Doron .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2007, 154 (07) :A605-A613
[10]   Ultralong single crystalline V2O5 nanowire/graphene composite fabricated by a facile green approach and its lithium storage behavior [J].
Liu, Haimei ;
Yang, Wensheng .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (10) :4000-4008