NeoMutate: an ensemble machine learning framework for the prediction of somatic mutations in cancer

被引:34
作者
Anzar, Irantzu [1 ]
Sverchkova, Angelina [1 ]
Stratford, Richard [1 ]
Clancy, Trevor [1 ]
机构
[1] OncoImmunity AS, Oslo Canc Cluster, Ullernchausseen 64-66, N-0379 Oslo, Norway
关键词
Somatic variant detection; Machine learning; Cancer genomics; Precision medicine; POINT MUTATIONS; IDENTIFICATION; ALGORITHMS; DISCOVERY; VARIANTS; PIPELINE;
D O I
10.1186/s12920-019-0508-5
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
BackgroundThe accurate screening of tumor genomic landscapes for somatic mutations using high-throughput sequencing involves a crucial step in precise clinical diagnosis and targeted therapy. However, the complex inherent features of cancer tissue, especially, tumor genetic intra-heterogeneity coupled with the problem of sequencing and alignment artifacts, makes somatic variant calling a challenging task. Current variant filtering strategies, such as rule-based filtering and consensus voting of different algorithms, have previously helped to increase specificity, although comes at the cost of sensitivity.MethodsIn light of this, we have developed the NeoMutate framework which incorporates 7 supervised machine learning (ML) algorithms to exploit the strengths of multiple variant callers, using a non-redundant set of biological and sequence features. We benchmarked NeoMutate by simulating more than 10,000 bona fide cancer-related mutations into three well-characterized Genome in a Bottle (GIAB) reference samples.ResultsA robust and exhaustive evaluation of NeoMutate's performance based on 5-fold cross validation experiments, in addition to 3 independent tests, demonstrated a substantially improved variant detection accuracy compared to any of its individual composite variant callers and consensus calling of multiple tools.ConclusionsWe show here that integrating multiple tools in an ensemble ML layer optimizes somatic variant detection rates, leading to a potentially improved variant selection framework for the diagnosis and treatment of cancer.
引用
收藏
页数:14
相关论文
共 44 条
[1]   A comprehensive assessment of somatic mutation detection in cancer using whole-genome sequencing [J].
Alioto, Tyler S. ;
Buchhalter, Ivo ;
Derdak, Sophia ;
Hutter, Barbara ;
Eldridge, Matthew D. ;
Hovig, Eivind ;
Heisler, Lawrence E. ;
Beck, Timothy A. ;
Simpson, Jared T. ;
Tonon, Laurie ;
Sertier, Anne-Sophie ;
Patch, Ann-Marie ;
Jaeger, Natalie ;
Ginsbach, Philip ;
Drews, Ruben ;
Paramasivam, Nagarajan ;
Kabbe, Rolf ;
Chotewutmontri, Sasithorn ;
Diessl, Nicolle ;
Previti, Christopher ;
Schmidt, Sabine ;
Brors, Benedikt ;
Feuerbach, Lars ;
Heinold, Michael ;
Groebner, Susanne ;
Korshunov, Andrey ;
Tarpey, Patrick S. ;
Butler, Adam P. ;
Hinton, Jonathan ;
Jones, David ;
Menzies, Andrew ;
Raine, Keiran ;
Shepherd, Rebecca ;
Stebbings, Lucy ;
Teague, Jon W. ;
Ribeca, Paolo ;
Giner, Francesc Castro ;
Beltran, Sergi ;
Raineri, Emanuele ;
Dabad, Marc ;
Heath, Simon C. ;
Gut, Marta ;
Denroche, Robert E. ;
Harding, Nicholas J. ;
Yamaguchi, Takafumi N. ;
Fujimoto, Akihiro ;
Nakagawa, Hidewaki ;
Quesada, Ctor ;
Valdes-Mas, Rafael ;
Nakken, Sigve .
NATURE COMMUNICATIONS, 2015, 6
[2]   The COSMIC (Catalogue of Somatic Mutations in Cancer) database and website [J].
Bamford, S ;
Dawson, E ;
Forbes, S ;
Clements, J ;
Pettett, R ;
Dogan, A ;
Flanagan, A ;
Teague, J ;
Futreal, PA ;
Stratton, MR ;
Wooster, R .
BRITISH JOURNAL OF CANCER, 2004, 91 (02) :355-358
[3]   Comprehensive benchmarking of SNV callers for highly admixed tumor data [J].
Bohnert, Regina ;
Vivas, Sonia ;
Jansen, Gunther .
PLOS ONE, 2017, 12 (10)
[4]   BBMerge - Accurate paired shotgun read merging via overlap [J].
Bushnell, Brian ;
Rood, Jonathan ;
Singer, Esther .
PLOS ONE, 2017, 12 (10)
[5]  
Cai L, 2016, SCI REP, V6
[6]   BAYSIC: a Bayesian method for combining sets of genome variants with improved specificity and sensitivity [J].
Cantarel, Brandi L. ;
Weaver, Daniel ;
McNeill, Nathan ;
Zhang, Jianhua ;
Mackey, Aaron J. ;
Reese, Justin .
BMC BIOINFORMATICS, 2014, 15
[7]   CoVaCS: a consensus variant calling system [J].
Chiara, Matteo ;
Gioiosa, Silvia ;
Chillemi, Giovanni ;
D'Antonio, Mattia ;
Flati, Tiziano ;
Picardi, Ernesto ;
Zambelli, Federico ;
Horner, David Stephen ;
Pesole, Graziano ;
Castrignano, Tiziana .
BMC GENOMICS, 2018, 19
[8]   Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples [J].
Cibulskis, Kristian ;
Lawrence, Michael S. ;
Carter, Scott L. ;
Sivachenko, Andrey ;
Jaffe, David ;
Sougnez, Carrie ;
Gabriel, Stacey ;
Meyerson, Matthew ;
Lander, Eric S. ;
Getz, Gad .
NATURE BIOTECHNOLOGY, 2013, 31 (03) :213-219
[9]   The Genetic Basis for Cancer Treatment Decisions [J].
Dancey, Janet E. ;
Bedard, Philippe L. ;
Onetto, Nicole ;
Hudson, Thomas J. .
CELL, 2012, 148 (03) :409-420
[10]   A framework for variation discovery and genotyping using next-generation DNA sequencing data [J].
DePristo, Mark A. ;
Banks, Eric ;
Poplin, Ryan ;
Garimella, Kiran V. ;
Maguire, Jared R. ;
Hartl, Christopher ;
Philippakis, Anthony A. ;
del Angel, Guillermo ;
Rivas, Manuel A. ;
Hanna, Matt ;
McKenna, Aaron ;
Fennell, Tim J. ;
Kernytsky, Andrew M. ;
Sivachenko, Andrey Y. ;
Cibulskis, Kristian ;
Gabriel, Stacey B. ;
Altshuler, David ;
Daly, Mark J. .
NATURE GENETICS, 2011, 43 (05) :491-+