On automorphism groups of Riemann double covers of Klein surfaces

被引:3
|
作者
Bujalance, E. [1 ]
Cirre, F. J. [1 ]
Conder, M. D. E. [2 ]
机构
[1] UNED, Fac Ciencias, Dept Matemat Fundamentales, C Senda del Rey S-N, Madrid 28040, Spain
[2] Univ Auckland, Dept Math, Private Bag 92019, Auckland 1142, New Zealand
关键词
Automorphisms Riemann surfaces; Fuchsian groups; Klein surfaces; Non-Euclidean crystallographic groups; CRYSTALLOGRAPHIC GROUPS; COMPLEX DOUBLES; NUMBER;
D O I
10.1016/j.jalgebra.2016.09.032
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
If G is a group of automorphisms of a compact Klein surface X, then. the direct product G X C-2 is a group of automorphisms of the Riemann double cover X+ of X. In this paper we analyse the relationship between G and the full groups of automorphisms Aut(X) and Aut(X+) of X and X+ respectively, in the special case where the group G is uniformised by a non-Euclidean crystallographic group with quadrangular signature (2, 2, 2, n). There is a difference in what happens between bordered surfaces and unbordered non-orientable surfaces, and so we consider those cases separately (including the special situation for n = 4 in the unbordered case). (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:146 / 171
页数:26
相关论文
共 50 条
  • [21] The action of the groups Dm × Dn on unbordered Klein surfaces
    J. J. Etayo Gordejuela
    E. Martínez
    Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, 2011, 105 : 97 - 108
  • [22] On the orders of largest groups of automorphisms of compact Riemann surfaces
    Baginski, Czeslaw
    Gromadzki, Grzegorz
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2021, 225 (12)
  • [23] The action of the groups Dm x Dn on unbordered Klein surfaces
    Etayo Gordejuela, J. J.
    Martinez, E.
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2011, 105 (01) : 97 - 108
  • [24] HIGHER SPIN KLEIN SURFACES
    Natanzon, Sergey
    Pratoussevitch, Anna
    MOSCOW MATHEMATICAL JOURNAL, 2016, 16 (01) : 95 - 124
  • [25] On families of Riemann surfaces with automorphisms
    Izquierdo, Milagros
    Reyes-Carocca, Sebastian
    Rojas, Anita M.
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2021, 225 (10)
  • [26] GROUPS OF AUTOMORPHISMS OF BORDERED ORIENTABLE KLEIN SURFACES OF TOPOLOGICAL GENUS 2
    Bujalance, E.
    Etayo, J. J.
    Martinez, E.
    OSAKA JOURNAL OF MATHEMATICS, 2017, 54 (04) : 807 - 822
  • [27] Riemann surfaces with maximal real symmetry
    Bujalance, E.
    Cirre, F. J.
    Conder, M. D. E.
    JOURNAL OF ALGEBRA, 2015, 443 : 494 - 516
  • [28] On Ovals of Riemann Surfaces of Even Genera
    Grzegorz Gromadzki
    Milagros Izquierdo
    Geometriae Dedicata, 1999, 78 : 81 - 88
  • [29] On ovals of Riemann surfaces of even genera
    Gromadzki, G
    Izquierdo, M
    GEOMETRIAE DEDICATA, 1999, 78 (01) : 81 - 88
  • [30] p-Groups of automorphisms of compact non-orientable Riemann surfaces
    Bujalance, E.
    Cirre, F. J.
    Gamboa, J. M.
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2021, 115 (04)