Universal Deformation Rings of Modules for Algebras of Dihedral Type of Polynomial Growth

被引:7
作者
Bleher, Frauke M. [1 ]
Talbott, Shannon N. [2 ]
机构
[1] Univ Iowa, Dept Math, Iowa City, IA 52242 USA
[2] Coll Mt St Joseph, Dept Math, Cincinnati, OH 45233 USA
关键词
Universal deformation rings; Algebras of dihedral type; Polynomial growth; Stable endomorphism rings;
D O I
10.1007/s10468-012-9399-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let k be an algebraically closed field, and let I > be an algebra of dihedral type of polynomial growth as classified by Erdmann and SkowroA"ski. We describe all finitely generated I >-modules V whose stable endomorphism rings are isomorphic to k and determine their universal deformation rings R(I >, V). We prove that only three isomorphism types occur for R(I >, V): k, k[[t]]/(t (2)) and k[[t]].
引用
收藏
页码:289 / 303
页数:15
相关论文
共 13 条
[1]  
Auslander M., 1995, CAMBRIDGE STUDIES AD, V36
[2]  
Bleher F.M., 2012, T AM MATH S IN PRESS
[3]   Universal deformation rings and Klein four defect groups [J].
Bleher, FM .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 354 (10) :3893-3906
[4]   Universal deformation rings need not be complete intersections [J].
Bleher, Frauke M. ;
Chinburg, Ted .
MATHEMATISCHE ANNALEN, 2007, 337 (04) :739-767
[5]   Universal deformation rings of modules over Frobenius algebras [J].
Bleher, Frauke M. ;
Velez-Marulanda, Jose A. .
JOURNAL OF ALGEBRA, 2012, 367 :176-202
[6]   UNIVERSAL DEFORMATION RINGS AND DIHEDRAL DEFECT GROUPS [J].
Bleher, Frauke M. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 361 (07) :3661-3705
[7]  
Brauer R., 1974, Symp. Math., V13, P367
[8]   AUSLANDER-REITEN SEQUENCES WITH FEW MIDDLE TERMS AND APPLICATIONS TO STRING ALGEBRAS [J].
BUTLER, MCR ;
RINGEL, CM .
COMMUNICATIONS IN ALGEBRA, 1987, 15 (1-2) :145-179
[9]  
Chinburg T, 2005, REND SEMIN MAT U PAD, V113, P135
[10]  
ERDMANN K, 1990, LECT NOTES MATH, V1428, pR3