THE NUMBER OF LIMIT CYCLES FOR GENERALIZED ABEL EQUATIONS WITH PERIODIC COEFFICIENTS OF DEFINITE SIGN

被引:19
作者
Alvarez, Amelia [1 ]
Bravo, Jose-Luis [1 ]
Fernandez, Manuel [1 ]
机构
[1] Univ Extremadura, Dept Matemat, E-06071 Badajoz, Spain
关键词
Abel equation; periodic solution; limit cycle;
D O I
10.3934/cpaa.2009.8.1493
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the number of limit cycles (isolated periodic solutions in the set of all periodic solutions) for the generalized Abel equation x' = a(t)x(n)a+b(t)x(n)b+c(t)x(n)c+d(t)x, where n(a) > n(b) > n(c) > 1, a(t), b(t), c(t), d(t) are 2 pi-periodic continuous functions, and two of a(t), b(t), c(t) have definite sign. We obtain examples with at least seven limit cycles, and some sufficient conditions for the equation to have at most one or at most two positive limit cycles.
引用
收藏
页码:1493 / 1501
页数:9
相关论文
共 10 条
  • [1] A new uniqueness criterion for the number of periodic orbits of Abel equations
    Alvarez, M. J.
    Gasull, A.
    Giacomini, H.
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 234 (01) : 161 - 176
  • [2] Periodic solutions of Abel differential equations
    Alwash, M. A. M.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 329 (02) : 1161 - 1169
  • [3] Cherkas L. A., 1975, DIFF URAVN, V12, P944
  • [4] LIMIT-CYCLES FOR A CLASS OF ABEL EQUATIONS
    GASULL, A
    LLIBRE, J
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1990, 21 (05) : 1235 - 1244
  • [5] Limit cycles for generalized Abel equations
    Gasull, Armengol
    Guillamon, Antoni
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2006, 16 (12): : 3737 - 3745
  • [6] Kostrikin A. I., 1982, Introduction to Algebra
  • [7] Lins-Neto A., 1980, Invent. Math., V59, P67
  • [8] LLOYD NG, 1973, P LOND MATH SOC, V27, P667
  • [9] Pliss V.A., 1966, Nonlocal Problems of the Theory of Oscillations
  • [10] Szego Gabor, 1975, Amer. Math. Soc. Colloq. Publ.