Stability analysis and optimal control of a fractional-order model for African swine fever

被引:12
|
作者
Shi, Ruiqing [1 ]
Li, Yang [1 ]
Wang, Cuihong [1 ]
机构
[1] Shanxi Normal Univ, Sch Math & Comp Sci, Linfen 041004, Shanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
African swine fever; Fractional-order; Basic reproduction number; Stability; Optimal control; EPIDEMIC MODEL; DOMESTIC PIGS; TRANSMISSION; VIRUS; DYNAMICS; OUTBREAKS;
D O I
10.1016/j.virusres.2020.198111
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
In this paper, a basic fractional-order model is proposed to describe the transmission of African swine fever. Two cases are considered: constant control and optimal control. In the former case, the existence and uniqueness of positive solution is proved firstly; then the basic reproduction number and the sufficient conditions for the stability of two equilibriums are obtained by using the next generation matrix method and Lyapunov LaSalle's invariance principle. In the latter case, optimal control is considered. By using the Hamiltonian function and Pontryagin's maximum principle, the optimal control formula is obtained. In addition, some examples and numerical simulations (based on Adama-Bashforth-Moulton predictor-corrector method) are performed to verify the theoretical results. At last, we present some brief discussion and conclusion.
引用
收藏
页数:11
相关论文
共 50 条
  • [11] Stability Analysis and Optimal Control of a Fractional Cholera Epidemic Model
    He, Yanyan
    Wang, Zhen
    FRACTAL AND FRACTIONAL, 2022, 6 (03)
  • [12] Optimal Control of a Cell-to-Cell Fractional-Order Model with Periodic Immune Response for HCV
    Yang, Xue
    Su, Yongmei
    Li, Huijia
    Zhuo, Xinjian
    SYMMETRY-BASEL, 2021, 13 (11):
  • [13] Optimal control and bifurcation analysis of a delayed fractional-order SIRS model with general incidence rate and delayed control
    Xu, Conghui
    Yu, Yongguang
    Ren, Guojian
    Si, Xinhui
    NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2024, 29 (05): : 890 - 913
  • [14] Analysis and Optimal Control of Fractional-Order Transmission of a Respiratory Epidemic Model
    Yaro D.
    Apeanti W.O.
    Akuamoah S.W.
    Lu D.
    International Journal of Applied and Computational Mathematics, 2019, 5 (4)
  • [15] Dynamics analysis and optimal control of a fractional-order lung cancer model
    Wu, Xingxiao
    Huang, Lidong
    Zhang, Shan
    Qin, Wenjie
    AIMS MATHEMATICS, 2024, 9 (12): : 35759 - 35799
  • [16] Stability control of a fractional-order Morris-Lecar neuronal model via fractional-order washout filter
    Yue, Kelong
    Yang, Renhuan
    Yang, Xiuzeng
    Cai, Qingwen
    Shen, Chao
    Yang, Liu
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2022, 33 (09):
  • [17] Analysis of Atangana-Baleanu fractional-order SEAIR epidemic model with optimal control
    Deressa, Chernet Tuge
    Duressa, Gemechis File
    ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
  • [18] Study of a fractional-order model of chronic wasting disease
    Maji, Chandan
    Mukherjee, Debasis
    Kesh, Dipak
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (07) : 4669 - 4682
  • [19] Optimal fractional-order adaptive fuzzy control on inverted pendulum model
    Girgis, Meena E.
    Badr, Ragia I.
    INTERNATIONAL JOURNAL OF DYNAMICS AND CONTROL, 2021, 9 (01) : 288 - 298
  • [20] Mathematical Identification Analysis of a Fractional-Order Delayed Model for Tuberculosis
    Georgiev, Slavi
    FRACTAL AND FRACTIONAL, 2023, 7 (07)