Techno-economic and environmental analyses of a biomass based system employing solid oxide fuel cell, externally fired gas turbine and organic Rankine cycle

被引:96
作者
Roy, Dibyendu [1 ]
Samanta, Samiran [2 ]
Ghosh, Sudip [1 ]
机构
[1] Indian Inst Engn Sci & Technol, Dept Mech Engn, Howrah 711103, W Bengal, India
[2] Deemed Univ, Kalinga Inst Ind Technol, Sch Mech Engn, Bhubaneswar 24, Orissa, India
关键词
Biomass gasification; Solid oxide fuel cell; Gas turbine; Organic Rankine cycle; Exergy; Economic analysis; SOFC-GT; MULTIOBJECTIVE OPTIMIZATION; THERMODYNAMIC ANALYSIS; PERFORMANCE ANALYSIS; POWER-PLANT; NATURAL-GAS; HYDROGEN-PRODUCTION; ECONOMIC-ANALYSIS; EXERGY ANALYSIS; WASTE HEAT;
D O I
10.1016/j.jclepro.2019.03.261
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This paper presents a techno-economic and environmental assessment of a biomass gasification based power plant integrating a solid oxide fuel cell module, an externally fired gas turbine and an organic Rankine cycle. The proposed biomass based system is nonparallel with the conventional biomass based power generation system because of biomass gasification, solid oxide fuel cell, externally fired gas turbine, organic Rankine cycle have been combined in a single system. The thermodynamic and economic performances of the plant have been investigated under the varying operating and design parameters. The maximum energetic and exergetic efficiencies of the system are computed to be 49.47% and 44.2%, respectively. Exergy analysis predicts that the biomass gasifier unit contributes highest amount of exergy destruction (38.91%) in terms of total exergy destruction of the system, followed by solid oxide fuel cell (21.24%) and secondary heat exchanger (13.11%). Economic analysis forecasts that the minimum levelized unit cost of electricity would be 0.086 $/kWh. A performance comparison with other conventional biomass based power generation systems shows that the proposed system exhibits better efficiency and cost of electricity than others. Environmental analysis predicts that the maximum CO2 emission reduction potential is computed to be 3564 t CO2/year compared to the fossil fuel based power plant. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:36 / 57
页数:22
相关论文
共 93 条
[1]   Exergetic performance coefficient analysis of a simple fuel cell system [J].
Akkaya, Ali Volkan ;
Sahin, Bahri ;
Erdem, Hasan Huseyin .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2007, 32 (17) :4600-4609
[2]   Turbine startup methods for externally fired micro gas turbine (EFMGT) system using biomass fuels [J].
Al-attab, K. A. ;
Zainal, Z. A. .
APPLIED ENERGY, 2010, 87 (04) :1336-1341
[3]   Exergy analysis of an integrated solid oxide fuel cell and organic Rankine cycle for cooling, heating and power production [J].
Al-Sulaiman, Fahad A. ;
Dincer, Ibrahim ;
Hamdullahpur, Feridun .
JOURNAL OF POWER SOURCES, 2010, 195 (08) :2346-2354
[4]  
Alauddin ZA, 1996, THESIS
[5]   Prediction of the working parameters of a wood waste gasifier through an equilibrium model [J].
Altafini, CR ;
Wander, PR ;
Barreto, RM .
ENERGY CONVERSION AND MANAGEMENT, 2003, 44 (17) :2763-2777
[6]   Exergetic, economic, and environmental evaluations and multi-objective optimization of an internal-reforming SOFC-gas turbine cycle coupled with a Rankine cycle [J].
Aminyavari, Mehdi ;
Mamaghani, Alireza Haghighat ;
Shirazi, Alec ;
Najafi, Behzad ;
Rinaldi, Fabio .
APPLIED THERMAL ENGINEERING, 2016, 108 :833-846
[7]  
[Anonymous], 1996, BIOMASS, DOI DOI 10.2172/419974
[8]   Exergoeconomic and environmental analysis of a novel configuration of solar-biomass hybrid power generation system [J].
Anvari, Simin ;
Khalilarya, Sharam ;
Zare, V. .
ENERGY, 2018, 165 :776-789
[9]   Thermoeconomic modeling and parametric study of hybrid SOFC-gas turbine-steam turbine power plants ranging from 1.5 to 10 MWe [J].
Arsalis, Alexandros .
JOURNAL OF POWER SOURCES, 2008, 181 (02) :313-326
[10]   Energy and exergy analysis of a sugar cane bagasse gasifier integrated to a solid oxide fuel cell based on a quasi-equilibrium approach [J].
Arteaga-Perez, Luis E. ;
Casas-Ledon, Yannay ;
Perez-Bermudez, Raul ;
Peralta, Luis M. ;
Dewulf, Jo ;
Prins, Wolter .
CHEMICAL ENGINEERING JOURNAL, 2013, 228 :1121-1132