Active distribution system;
distributed generation;
network switching;
optimal power flow;
smart grid;
volt/VAR control;
voltage control;
OPTIMAL POWER-FLOW;
NETWORK RECONFIGURATION;
DISTRIBUTION-SYSTEMS;
CONTROL ALGORITHM;
GENERATION;
SUPPORT;
MODEL;
D O I:
10.1109/TPWRS.2013.2287897
中图分类号:
TM [电工技术];
TN [电子技术、通信技术];
学科分类号:
0808 ;
0809 ;
摘要:
This paper deals with the management of voltage constraints in active distribution systems that host a significant amount of distributed generation (DG) units. To this end we propose a centralized optimization approach which aims at minimizing the amount of MW curtailment of non-firm DG to remove voltage constraints. The salient feature of this approach is that it comprehensively and properly models the full variety of possible control means (i.e., DG active/reactive power including DG shut-down, on load tap changing transformer ratio, shunt capacitor, and remotely controlled switches or breakers), most of which having a discrete behavior. We develop and compare the performances of two optimization models on a snapshot basis for various distribution systems up to 1089 buses. In particular we show that the use of remotely controlled switches so as to transfer DG between feeders in case of voltage constraints may lead to significant reduction of the DG curtailment.