Linear peeling-ballooning mode simulations in snowflake-like divertor configuration using BOUT plus plus code

被引:10
|
作者
Ma, J. F. [1 ,2 ]
Xu, X. Q. [2 ]
Dudson, B. D. [3 ]
机构
[1] Univ Texas Austin, Inst Fus Studies, Austin, TX 78712 USA
[2] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
[3] Univ York, York YO10 5DD, N Yorkshire, England
关键词
tokamaks; snowflake divertor; peeling-ballooning mode; plasma simulation; EDGE PLASMA; CONFINEMENT; PEDESTAL; STABILITY;
D O I
10.1088/0029-5515/54/3/033011
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We present linear characteristics of peeling-ballooning (P-B) modes in the pedestal region of DIII-D tokamak with snowflake (SF) plus divertor configuration using edge two-fluid code BOUT++. A set of reduced magnetohydrodynamics (MHD) equations is found to simulate the linear P-B mode in both snowflake plus and standard (STD) single-null divertor configurations. Further analysis shows that the implementation of snowflake geometry changes the local magnetic shear in the pedestal region, which leads to different linear behaviours of the P-B mode in STD and SF divertor configuration. Primary linear simulation results are the following. (1) The growth rate of the coupled P-B mode in SF-plus divertor geometry is larger than that in STD divertor geometry. (2) The global linear mode structures are more radially extended yet less poloidally extended in SF-plus divertor geometry, especially for moderate and high toroidal mode numbers. (3) The current-gradient drive (the kink term) dominates the P-B mode for low n, while the pressure gradient drive (ballooning) dominates for n > 25. In addition, constraints on poloidal field and central solenoid coils for snowflake geometry are briefly discussed based on conclusions in this paper.
引用
收藏
页数:9
相关论文
共 6 条
  • [1] Nonlinear ELM simulations based on a nonideal peeling-ballooning model using the BOUT plus plus code
    Xu, X. Q.
    Dudson, B. D.
    Snyder, P. B.
    Umansky, M. V.
    Wilson, H. R.
    Casper, T.
    NUCLEAR FUSION, 2011, 51 (10)
  • [2] Linear simulation of kinetic Peeling-Ballooning mode with bootstrap current under the BOUT plus plus gyro landau fluid code
    Li, P. F.
    Xu, X. Q.
    Ma, C. H.
    Snyder, P. B.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2023, 65 (01)
  • [3] Six-field two-fluid simulations of peeling-ballooning modes using BOUT plus
    Xia, T. Y.
    Xu, X. Q.
    Xi, P. W.
    NUCLEAR FUSION, 2013, 53 (07)
  • [4] Simulations of divertor heat flux width using transport code with cross-field drifts under the BOUT plus plus framework
    Li, N. M.
    Xu, X. Q.
    Hughes, J. W.
    Terry, J. L.
    Sun, J. Z.
    Wang, D. Z.
    AIP ADVANCES, 2020, 10 (01)
  • [5] Prediction of divertor heat flux width for ITER pre-fusion power operation using BOUT plus plus transport code
    He, X. X.
    Xu, X. Q.
    Li, Z. Y.
    Zhu, B.
    Liu, Y.
    NUCLEAR FUSION, 2022, 62 (05)
  • [6] ELMy H-mode linear simulation with 3-field model on experimental advanced superconducting tokamak using BOUT plus
    Liu, Z. X.
    Xia, T. Y.
    Xu, X. Q.
    Gao, X.
    Hughes, J. W.
    Liu, S. C.
    Ding, S. Y.
    Li, J. G.
    PHYSICS OF PLASMAS, 2012, 19 (10)