Einstein-Maxwell field equations in isotropic coordinates: an application to neutron star and quark star

被引:11
|
作者
Pradhan, N. [1 ]
Pant, Neeraj [2 ]
机构
[1] Natl Def Acad, Dept Phys, Pune 411023, Maharashtra, India
[2] Natl Def Acad, Dept Math, Pune 411023, Maharashtra, India
关键词
Isotropic coordinates; General relativity; Reissner-Nordstrom; Fluid ball;
D O I
10.1007/s10509-014-1905-z
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present a new class of static spherically symmetric exact solutions of the Einstein-Maxwell field equations in isotropic coordinates for perfect fluid by considering a specific choice of electrical intensity which involves a parameter K. The resulting solutions represent charged fluid spheres joining smoothly with the Reissner-Nordstrom metric at the pressure free interface. The solutions so obtained are utilized to construct the models for super-dense star like neutron stars (rho (b) =2 and 2.7x10(14) g/cm(3)) and Quark stars (rho (b) =4.6888x10(14) g/cm(3)). It is observed that the models are well behaved for the restricted value of parameter K (0.141a parts per thousand currency signKa parts per thousand currency sign0.159999). Corresponding to K (max) =0.159999 for which, u (max) =0.259, the resulting Quark star has a maximum mass M=1.618 M (aS (TM)) and radius R=9.263 km and the neutron star modeling based on the particular solution; corresponding to K=0.15, u=0.238 and by assuming the surface density rho (b) =2.7x10(14) g/cm(3) the maximum mass of neutron star M=1.966 M (aS (TM)) and radius R=12.23 km and by assuming the surface density rho (b) =2x10(14) g/cm(3) the resulting well behaved solution has a maximum mass of neutron M=2.284 M (aS (TM)) and radius R=14.21 km. The robustness of our result is that it matches with the recent discoveries.
引用
收藏
页码:143 / 149
页数:7
相关论文
共 44 条
  • [21] All solutions of Einstein-Maxwell equations with a cosmological constant in 2+1 dimensions
    Podolsky, Jiri
    Papajcik, Matus
    PHYSICAL REVIEW D, 2022, 105 (06)
  • [22] Gauge-Theoretical Method in Solving Zero-Curvature Equations: I. Application to the Static Einstein-Maxwell Equations with Magnetic Charge
    Azuma, Takahiro
    Koikawa, Takao
    PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS, 2025, 2025 (02):
  • [23] A solution of the Einstein-Maxwell equations describing conformally flat spacetime outside a charged domain wall
    Gron, O.
    Johannesen, S.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2011, 126 (09): : 1 - 8
  • [24] Static magnetic dipole solutions of Einstein-Maxwell equations from the soliton solutions of a Kerr object
    Chaudhuri, A.
    Nandi, S.
    Chaudhuri, S.
    CANADIAN JOURNAL OF PHYSICS, 2022, : 511 - 518
  • [25] EINSTEIN@HOME DISCOVERY OF A DOUBLE NEUTRON STAR BINARY IN THE PALFA SURVEY
    Lazarus, P.
    Freire, P. C. C.
    Allen, B.
    Aulbert, C.
    Bock, O.
    Bogdanov, S.
    Brazier, A.
    Camilo, F.
    Cardoso, F.
    Chatterjee, S.
    Cordes, J. M.
    Crawford, F.
    Deneva, J. S.
    Eggenstein, H. -B.
    Fehrmann, H.
    Ferdman, R.
    Hessels, J. W. T.
    Jenet, F. A.
    Karako-Argaman, C.
    Kaspi, V. M.
    Knispel, B.
    Lynch, R.
    van Leeuwen, J.
    Machenschalk, B.
    Madsen, E.
    McLaughlin, M. A.
    Patel, C.
    Ransom, S. M.
    Scholz, P.
    Seymour, A.
    Siemens, X.
    Spitler, L. G.
    Stairs, I. H.
    Stovall, K.
    Swiggum, J.
    Venkataraman, A.
    Zhu, W. W.
    ASTROPHYSICAL JOURNAL, 2016, 831 (02)
  • [26] Gauge structure of the Einstein field equations in Bondi-like coordinates
    Giannakopoulos, Thanasis
    Bishop, Nigel T.
    Hilditch, David
    Pollney, Denis
    Zilhao, Miguel
    PHYSICAL REVIEW D, 2022, 105 (08)
  • [27] All static and electrically charged solutions with Einstein base manifold in the arbitrary-dimensional Einstein-Maxwell system with a massless scalar field
    Maeda, Hideki
    Martinez, Cristian
    EUROPEAN PHYSICAL JOURNAL C, 2018, 78 (10):
  • [28] Static and spherically symmetric two-mass solutions of Einstein-Maxwell equations with cosmological constant based on Nariai spacetime
    Fennen, Michael
    Giulini, Domenico
    CLASSICAL AND QUANTUM GRAVITY, 2015, 32 (04)
  • [29] New infinite-dimensional symmetry groups for the stationary axisymmetric Einstein-Maxwell equations with multiple Abelian gauge fields
    Department of Physics, Bohai University, Jinzhou 121000, China
    Chin. Phys., 2006, 1 (66-76): : 66 - 76
  • [30] New infinite-dimensional symmetry groups for the stationary axisymmetric Einstein-Maxwell equations with multiple Abelian gauge fields
    Gao, YJ
    CHINESE PHYSICS, 2006, 15 (01): : 66 - 76