Molecular site for nucleotide binding on an ATP-sensitive renal K+ channel (ROMK2)

被引:52
作者
McNicholas, CM
Yang, YH
Giebisch, G
Hebert, SC
机构
[1] YALE UNIV, SCH MED, DEPT CELLULAR & MOL PHSYIOL, NEW HAVEN, CT 06520 USA
[2] HARVARD UNIV, SCH MED, BOSTON, MA 02115 USA
[3] BRIGHAM & WOMENS HOSP, DEPT MED, DIV RENAL, LAB MOL PHYSIOL & BIOPHYS, BOSTON, MA 02115 USA
关键词
inwardly rectifying potassium channel; adenosine 5'-triphosphate-dependent regulation; protein kinase A; Xenopus oocytes; site-directed mutagenesis;
D O I
10.1152/ajprenal.1996.271.2.F275
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
ATP-sensitive, inwardly rectifying K+ channels are present in apical membranes of the distal nephron and play a major role in K+ recycling and secretion. The cloned renal K+ channel, ROMK1, is a candidate for the renal epithelial K+ channel, since it shares many functional characteristics with the native channel. Additionally, ROMK1 contains a putative carboxy-terminal ATP-binding site. Although ROMK1 channel activity could be reactivated by cytosolic Mg-ATP after rundown, the role of nucleotides in channel gating was less certain. We now show that an alternatively spliced transcript of the ROMK channel gene, ROMK2, which encodes a K+ channel with a truncated amino terminus, expresses an ATP-regulated and ATP-sensitive K+ channel (I-KATP). Differences in the amino terminus of ROMK isoforms alters the sensitivity of the channel-gating mechanism to ATP. To test whether ATP sensitivity of renal I-KATP is mediated by direct interaction of nucleotide, point mutation of specific residues within the ROMK2 phosphate loop (P-loop) were investigated. These either enhanced or attenuated the sensitivity to both activation and inhibition by Mg-ATP, thus demonstrating a direct interaction of nucleotide with the channel-forming polypeptide.
引用
收藏
页码:F275 / F285
页数:11
相关论文
共 33 条
[1]   CLONING OF THE BETA-CELL HIGH-AFFINITY SULFONYLUREA RECEPTOR - A REGULATOR OF INSULIN-SECRETION [J].
AGUILARBRYAN, L ;
NICHOLS, CG ;
WECHSLER, SW ;
CLEMENT, JP ;
BOYD, AE ;
GONZALEZ, G ;
HERRERASOSA, H ;
NGUY, K ;
BRYAN, J ;
NELSON, DA .
SCIENCE, 1995, 268 (5209) :423-426
[2]  
[Anonymous], [No title captured]
[3]   ATP-SENSITIVE K+ CHANNELS IN RAT PANCREATIC BETA-CELLS - MODULATION BY ATP AND MG-2+ IONS [J].
ASHCROFT, FM ;
KAKEI, M .
JOURNAL OF PHYSIOLOGY-LONDON, 1989, 416 :349-367
[4]   PROPERTIES AND FUNCTIONS OF ATP-SENSITIVE K-CHANNELS [J].
ASHCROFT, SJH ;
ASHCROFT, FM .
CELLULAR SIGNALLING, 1990, 2 (03) :197-214
[5]   ROMK INWARDLY RECTIFYING ATP-SENSITIVE K+ CHANNEL .2. CLONING AND DISTRIBUTION OF ALTERNATIVE FORMS [J].
BOIM, MA ;
HO, K ;
SHUCK, ME ;
BIENKOWSKI, MJ ;
BLOCK, JH ;
SLIGHTOM, JL ;
YANG, YH ;
BRENNER, BM ;
HEBERT, SC .
AMERICAN JOURNAL OF PHYSIOLOGY-RENAL PHYSIOLOGY, 1995, 268 (06) :F1132-F1140
[6]   PERMEATION AND GATING PROPERTIES OF A CLONED RENAL K+ CHANNEL [J].
CHEPILKO, S ;
ZHOU, H ;
SACKIN, H ;
PALMER, LG .
AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY, 1995, 268 (02) :C389-C401
[7]  
FABIATO A, 1979, J PHYSIOL-PARIS, V75, P463
[8]   ATP4- AND ATP.MG INHIBIT THE ATP-SENSITIVE K+ CHANNEL OF RAT VENTRICULAR MYOCYTES [J].
FINDLAY, I .
PFLUGERS ARCHIV-EUROPEAN JOURNAL OF PHYSIOLOGY, 1988, 412 (1-2) :37-41
[9]   CLONING AND EXPRESSION OF AN INWARDLY RECTIFYING ATP-REGULATED POTASSIUM CHANNEL [J].
HO, K ;
NICHOLS, CG ;
LEDERER, WJ ;
LYTTON, J ;
VASSILEV, PM ;
KANAZIRSKA, MV ;
HEBERT, SC .
NATURE, 1993, 362 (6415) :31-38
[10]   RECONSTITUTION OF I-KATP - AN INWARD RECTIFIER SUBUNIT PLUS THE SULFONYLUREA RECEPTOR [J].
INAGAKI, N ;
GONOI, T ;
CLEMENT, JP ;
NAMBA, N ;
INAZAWA, J ;
GONZALEZ, G ;
AGUILARBRYAN, L ;
SEINO, S ;
BRYAN, J .
SCIENCE, 1995, 270 (5239) :1166-1170