Upper bounds for the density of solutions to stochastic differential equations driven by fractional Brownian motions

被引:19
|
作者
Baudoin, Fabrice [1 ]
Ouyang, Cheng [2 ]
Tindel, Samy [3 ]
机构
[1] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA
[2] Univ Illinois, Dept Math Stat & Comp Sci, Chicago, IL 60607 USA
[3] Univ Lorraine, Inst Elie Cartan Nancy, F-54506 Vandoeuvre Les Nancy, France
关键词
CALCULUS; SDES;
D O I
10.1214/12-AIHP522
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper we study upper bounds for the density of solution to stochastic differential equations driven by a fractional Brownian motion with Hurst parameter H > 1/3. We show that under some geometric conditions, in the regular case H > 1/2, the density of the solution satisfies the log-Sobolev inequality, the Gaussian concentration inequality and admits an upper Gaussian bound. In the rough case H > 1/3 and under the same geometric conditions, we show that the density of the solution is smooth and admits an upper sub-Gaussian bound.
引用
收藏
页码:111 / 135
页数:25
相关论文
共 50 条