Single-Step, Low-Temperature Simultaneous Formations and in Situ Binding of Tin Oxide Nanoparticles to Graphene Nanosheets by In-Liquid Plasma for Potential Applications in Gas Sensing and Lithium-Ion Batteries

被引:9
作者
Borude, Ranjit R. [1 ]
Sugiura, Hirotsugu [1 ]
Ishikawa, Kenji [1 ]
Tsutsumi, Takayoshi [1 ]
Kondo, Hiroki [1 ]
Ikarashi, Nobuyuki [2 ]
Hori, Masaru [3 ]
机构
[1] Nagoya Univ, Grad Sch Engn, Nagoya, Aichi 4648603, Japan
[2] Nagoya Univ, Inst Mat & Syst Sustainabil, Nagoya, Aichi 4648603, Japan
[3] Nagoya Univ, Inst Innovat Future Soc, Nagoya, Aichi 4648603, Japan
关键词
composite; tin oxide nanoparticles; nanographene; plasma in liquid; one-step synthesis; SNO2; NANOPARTICLES; PERFORMANCE;
D O I
10.1021/acsanm.8b02201
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The in situ binding of tin oxide (SnO2) nanoparticles (SNp) and graphene nanosheets (GNs) that synthesized simultaneously in single-step atmospheric-pressure processing was achieved at a low temperature by employing in-liquid plasma in a solution of tin chloride (SnCl2 center dot 2H(2)O) in ethanol as the only precursor. Transmission electron microscopy, Raman analysis, and X-ray diffraction revealed the composite (SNp/GNs) synthesis with SNp of sizes 2-3 nm, which were distributed uniformly and attached to both sides of the GNs. The SNp/GNs composite synthesis was provided by the simple, low-cost, single-processing method of the in-liquid plasma for future gas-sensing and lithium-ion battery applications.
引用
收藏
页码:649 / 654
页数:11
相关论文
共 26 条
[1]  
Abruzzi R. C., 2015, Cerâmica, V61, P328
[2]   Rapid growth of micron-sized graphene flakes using in-liquid plasma employing iron phthalocyanine-added ethanol [J].
Amano, Tomoki ;
Kondo, Hiroki ;
Ishikawa, Kenji ;
Tsutsumi, Takayoshi ;
Takeda, Keigo ;
Hiramatsu, Mineo ;
Sekine, Makoto ;
Hori, Masaru .
APPLIED PHYSICS EXPRESS, 2018, 11 (01)
[3]   Functional Composite Materials Based on Chemically Converted Graphene [J].
Bai, Hua ;
Li, Chun ;
Shi, Gaoquan .
ADVANCED MATERIALS, 2011, 23 (09) :1089-1115
[4]   Fast Response, Vertically Oriented Graphene Nanosheet Electric Double Layer Capacitors Synthesized from C2H2 [J].
Cai, Minzhen ;
Outlaw, Ronald A. ;
Quinlan, Ronald A. ;
Premathilake, Dilshan ;
Butler, Sue M. ;
Miller, John R. .
ACS NANO, 2014, 8 (06) :5873-5882
[5]   Assembling Tin Dioxide Quantum Dots to Graphene Nanosheets by a Facile Ultrasonic Route [J].
Chen, Chen ;
Wang, Lijun ;
Liu, Yanyu ;
Chen, Zhiwen ;
Pan, Dengyu ;
Li, Zhen ;
Jiao, Zheng ;
Hu, Pengfei ;
Shek, Chan-Hung ;
Wu, C. M. Lawrence ;
Lai, Joseph K. L. ;
Wu, Minghong .
LANGMUIR, 2013, 29 (12) :4111-4118
[6]   A review of plasma-liquid interactions for nanomaterial synthesis [J].
Chen, Qiang ;
Li, Junshuai ;
Li, Yongfeng .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2015, 48 (42)
[7]   Continuous-flow, atmospheric-pressure microplasmas: a versatile source for metal nanoparticle synthesis in the gas or liquid phase [J].
Chiang, Wei-Hung ;
Richmonds, Carolyn ;
Sankaran, R. Mohan .
PLASMA SOURCES SCIENCE & TECHNOLOGY, 2010, 19 (03)
[8]   The complete Raman spectrum of nanometric SnO2 particles [J].
Diéguez, A ;
Romano-Rodríguez, A ;
Vilà, A ;
Morante, JR .
JOURNAL OF APPLIED PHYSICS, 2001, 90 (03) :1550-1557
[9]   Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects [J].
Ferrari, Andrea C. .
SOLID STATE COMMUNICATIONS, 2007, 143 (1-2) :47-57
[10]   Ultrahigh-Speed Synthesis of Nanographene Using Alcohol In-Liquid Plasma [J].
Hagino, Tatsuya ;
Kondo, Hiroki ;
Ishikawa, Kenji ;
Kano, Hiroyuki ;
Sekine, Makoto ;
Hori, Masaru .
APPLIED PHYSICS EXPRESS, 2012, 5 (03)