RRtools - a maple package for aiding the discovery and proof of finite Rogers-Ramanujan type identities

被引:6
作者
Sills, AV [1 ]
机构
[1] Rutgers State Univ, Dept Math, Piscataway, NJ 08854 USA
关键词
Rogers-Ramarujan identities; q-series; experimental mathematics;
D O I
10.1016/j.jsc.2003.04.002
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The purpose of this paper is to introduce the RRtools and recpf Maple packages which were developed by the author to assist in the discovery and proof of finitizations of identities of the Rogers-Ramanujan type. (C) 2003 Elsevier Ltd. All rights reserved.
引用
收藏
页码:415 / 448
页数:34
相关论文
共 43 条
  • [1] Andrews G. E., 1976, ENCY MATH ITS APPL, V2
  • [2] THE HARD-HEXAGON MODEL AND ROGERS-RAMANUJAN TYPE IDENTITIES
    ANDREWS, GE
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-PHYSICAL SCIENCES, 1981, 78 (09): : 5290 - 5292
  • [3] 8-VERTEX SOS MODEL AND GENERALIZED ROGERS-RAMANUJAN-TYPE IDENTITIES
    ANDREWS, GE
    BAXTER, RJ
    FORRESTER, PJ
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1984, 35 (3-4) : 193 - 266
  • [4] A trinomial analogue of Bailey's lemma and N = 2 superconformal invariance
    Andrews, GE
    Berkovich, A
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1998, 192 (02) : 245 - 260
  • [5] LATTICE GAS GENERALIZATION OF THE HARD HEXAGON MODEL .3. Q-TRINOMIAL COEFFICIENTS
    ANDREWS, GE
    BAXTER, RJ
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1987, 47 (3-4) : 297 - 330
  • [6] ANDREWS GE, 1986, REGIONAL C SERIES MA, V66
  • [7] Andrews GE., 1990, J AM MATH SOC, V3, P653
  • [8] Andrews GE, 1999, ENCY MATH ITS APPL, V71
  • [9] [Anonymous], 1994, Number Theory
  • [10] Bailey WN, 1947, P LOND MATH SOC, V49, P421