Region of interest reconstruction in x-ray fluorescence computed tomography

被引:0
|
作者
La Riviere, Patrick J. [1 ]
Vargas, Phillip [1 ]
Xia, Dan [1 ]
Pan, Xiaochuan [1 ]
机构
[1] Univ Chicago, Dept Radiol, Chicago, IL 60637 USA
来源
DEVELOPMENTS IN X-RAY TOMOGRAPHY VI | 2008年 / 7078卷
关键词
X-ray fluorescence computed tomography; image reconstruction; region-of-interest reconstruction;
D O I
10.1117/12.793787
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
X-ray fluorescence computed tomography (XFCT) is a synchrotron-based imaging modality employed for mapping the distribution of elements within slices or volumes of intact specimens. A pencil beam of external radiation is used to stimulate emission of characteristic X-rays from within a sample, which is scanned and rotated through the pencil beam in a first-generation tomographic geometry. It has long been believed that for each slice, the acquired measurement lines must span the entire object at every projection view over 180 degrees to avoid reconstructing images with so-called truncation artifacts. However, recent developments in tomographic reconstruction theory have overturned those long-held beliefs about minimum-data requirements and shown that it is possible to obtain exact reconstruction of ROIs from truncated projections. In this work, we show how to exploit these developments to allow for region of interest imaging in XFCT.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Region of Interest Reconstruction in X-Ray Fluorescence Computed Tomography for Negligible Attenuation
    La Riviere, Patrick
    Vargas, Phillip
    Xia, Dan
    Pan, Xiaochuan
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2010, 57 (01) : 234 - 241
  • [2] High spatial resolution x-ray luminescence computed tomography and x-ray fluorescence computed tomography
    Dai, Xianjin
    Sivasubramanian, Kathyayini
    Xing, Lei
    MOLECULAR-GUIDED SURGERY: MOLECULES, DEVICES, AND APPLICATIONS V, 2019, 10862
  • [3] Accelerating X-ray Fluorescence Computed Tomography
    La Riviere, P. J.
    Vargas, P.
    Fu, G.
    Meng, L. J.
    2009 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-20, 2009, : 1000 - +
  • [4] Penalized-likelihood image reconstruction for x-ray fluorescence computed tomography
    La Riviere, Patrick J.
    Billmire, David
    Vargas, Phillip
    Rivers, Mark
    Sutton, Stephen R.
    OPTICAL ENGINEERING, 2006, 45 (07)
  • [5] The progress of X-ray fluorescence computed tomography at SSRF
    Deng, Biao
    Yang, Qun
    Du, Guohao
    Tong, Yajun
    Xie, Honglan
    Xiao, Tiqiao
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2013, 305 : 5 - 8
  • [6] Penalized-likelihood image reconstruction for x-ray fluorescence computed tomography with unknown fluorescence attenuation maps
    La Rivière, PJ
    Billmire, DM
    DEVELOPMENTS IN X-RAY TOMOGRAPHY IV, 2004, 5535 : 243 - 252
  • [7] Novel sampling strategies for x-ray fluorescence computed tomography
    La Riviere, Patrick J.
    Vargas, Phillip
    DEVELOPMENTS IN X-RAY TOMOGRAPHY VI, 2008, 7078
  • [8] Monotonic penalized-likelihood image reconstruction for X-ray fluorescence computed tomography
    La Riviere, Patrick J.
    Vargas, Phillip A.
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2006, 25 (09) : 1117 - 1129
  • [9] X-Ray Fluorescence Computed Tomography With Polycapillary Focusing
    Cong, Wenxiang
    Xi, Yan
    Wang, Ge
    IEEE ACCESS, 2014, 2 : 1138 - 1142
  • [10] Reduced-scan schemes for x-ray fluorescence computed tomography
    La Riviere, Patrick J.
    Vargas, Phillip
    Newville, Matt
    Sutton, Stephen R.
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2007, 54 (05) : 1535 - 1542