Examination of Relationships between Clear-Sky Longwave Radiation and Aspects of the Atmospheric Hydrological Cycle in Climate Models, Reanalyses, and Observations

被引:31
作者
Allan, Richard P. [1 ]
机构
[1] Univ Reading, Environm Syst Sci Ctr, Reading RG6 6AL, Berks, England
关键词
WATER-VAPOR; COUPLED MODEL; VARIABILITY; SIMULATION; SATELLITE; FEEDBACKS; COMPONENT; TRENDS; GPCP; WAVE;
D O I
10.1175/2008JCLI2616.1
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Relationships between clear-sky longwave radiation and aspects of the atmospheric hydrological cycle are quantified in models, reanalyses, and observations over the period 1980-2000. The robust sensitivity of clear-sky surface net longwave radiation (SNLc) to column-integrated water vapor (CWV) of 1-1.5 Wm(-2) mm(-1) combined with the positive relationship between CWV and surface temperature (T-s) explains substantial increases in clear-sky longwave radiative cooling of the atmosphere (Q(LWc)) to the surface over the period. Clear-sky outgoing longwave radiation (OLRc) is highly sensitive to changes in aerosol and greenhouse gas concentrations in addition to temperature and humidity. Over tropical ocean regions of mean descent, Q(LWc) increases with T-s at similar to 3.5-5.5 W m(-2) K-1 for reanalyses, estimates derived from satellite data, and models without volcanic forcing included. Increased Q(LWc) with warming across the tropical oceans helps to explain model ensemble mean increases in precipitation of 0.1-0.15 mm day(-1) K-1, which are primarily determined by ascent regions where precipitation increases at the rate expected from the Clausius-Clapeyron equation. The implications for future projections in the atmospheric hydrological cycle are discussed.
引用
收藏
页码:3127 / 3145
页数:19
相关论文
共 66 条