Local radial point interpolation (MLRPI) method for solving time fractional diffusion-wave equation with damping

被引:105
作者
Hosseini, Vahid Reza [1 ,3 ]
Shivanian, Elyas [2 ]
Chen, Wen [3 ]
机构
[1] Univ Mississippi, Sch Engn, 301 Brevard Hall, University, MS 38677 USA
[2] Imam Khomeini Int Univ, Dept Math, Qazvin 3414916818, Iran
[3] Hohai Univ, Coll Mech & Mat, State Key Lab Hydrol Water Resources & Hydraul En, Nanjing 210098, Jiangsu, Peoples R China
关键词
Local weak formulation; MLRPI; Radial basis function; Stability; Convergence; GALERKIN MLPG METHOD; VIBRATION ANALYSES; NUMERICAL-SOLUTION; MESHLESS METHOD; SCHEME; APPROXIMATION; FORMULATION; PARAMETERS;
D O I
10.1016/j.jcp.2016.02.030
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The purpose of the current investigation is to determine numerical solution of time-fractional diffusion-wave equation with damping for Caputo's fractional derivative of order alpha(1 < alpha <= 2). A meshless local radial point interpolation (MLRPI) scheme based on Galerkin weak form is analyzed. The reason of choosing MLRPI approach is that it does not require any background integrations cells, instead integrations are implemented over local quadrature domains which are further simplified for reducing the complication of computation using regular and simple shape. The unconditional stability and convergence with order O(tau(6-2 alpha)) are proved, where tau is time stepping. Also, several numerical experiments are illustrated to verify theoretical analysis. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:307 / 332
页数:26
相关论文
共 51 条
[1]   A meshfree method for the solution of two-dimensional cubic nonlinear Schrodinger equation [J].
Abbasbandy, S. ;
Ghehsareh, H. Roohani ;
Hashim, I. .
ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2013, 37 (06) :885-898
[2]   MLPG method for two-dimensional diffusion equation with Neumann's and non-classical boundary conditions [J].
Abbasbandy, S. ;
Shirzadi, A. .
APPLIED NUMERICAL MATHEMATICS, 2011, 61 (02) :170-180
[3]  
Atluri S. N., 1998, Computer Modeling and Simulation in Engineering, V3, P187
[4]   The meshless local Petrov-Galerkin (MLPG) approach for solving problems in elasto-statics [J].
Atluri, SN ;
Zhu, TL .
COMPUTATIONAL MECHANICS, 2000, 25 (2-3) :169-179
[5]  
Atluri SN, 2000, INT J NUMER METH ENG, V47, P537, DOI 10.1002/(SICI)1097-0207(20000110/30)47:1/3<537::AID-NME783>3.0.CO
[6]  
2-E
[7]   A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics [J].
Atluri, SN ;
Zhu, T .
COMPUTATIONAL MECHANICS, 1998, 22 (02) :117-127
[8]  
Avazzadeh Z, 2014, IRAN J SCI TECHNOL A, V38, P205
[9]   ELEMENT-FREE GALERKIN METHODS FOR STATIC AND DYNAMIC FRACTURE [J].
BELYTSCHKO, T ;
LU, YY ;
GU, L ;
TABBARA, M .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 1995, 32 (17-18) :2547-2570
[10]   ELEMENT-FREE GALERKIN METHODS [J].
BELYTSCHKO, T ;
LU, YY ;
GU, L .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1994, 37 (02) :229-256