Mixed finite element analysis for the Poisson-Nernst-Planck/Stokes coupling

被引:19
|
作者
He, Mingyan [1 ]
Sun, Pengtao [2 ]
机构
[1] Hangzhou Dianzi Univ, Sch Sci, Hangzhou 310018, Zhejiang, Peoples R China
[2] Univ Nevada, Dept Math Sci, 4505 Maryland Pkwy, Las Vegas, NV 89154 USA
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
Poisson-Nernst-Planck/Stokes coupling; Mixed finite element method; Taylor-Hood element; Semi-discretization; Full discretization; The optimal error estimate; WELL-POSEDNESS; DIFFERENTIAL-EQUATIONS; PLANCK EQUATIONS; ERROR ANALYSIS; SYSTEM; MODEL; APPROXIMATION; SIMULATION; TRANSPORT;
D O I
10.1016/j.cam.2018.04.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a type of mixed finite element method is developed to solve the Poisson-Nernst-Planck/Stokes coupling problem which is adopted to model charged fluids through the transport coupling between Stokes equations of an incompressible fluid and Poisson Nernst-Planck (PNP) equations of a diffuse charge system. The Taylor-Hood (Pk+1Pk) mixed element is employed to discretize both mixed Poisson equations and Stokes equations, and the standard P-k finite element is used to discretize Nernst-Planck equations. Optimal convergence rates for both the electrostatic potential and ionic concentrations of PNP equations are obtained in both L-2 and H-1 norms, simultaneously, optimal convergence rates are also obtained for the velocity and pressure of Stokes equations in [H-1](d) and L-2 norm, respectively. Numerical experiments validate the theoretical results. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:61 / 79
页数:19
相关论文
共 50 条
  • [1] Error Analysis of Mixed Finite Element Method for Poisson-Nernst-Planck System
    He, Mingyan
    Sun, Pengtao
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2017, 33 (06) : 1924 - 1948
  • [2] Mixed Finite Element Method for Modified Poisson-Nernst-Planck/Navier-Stokes Equations
    He, Mingyan
    Sun, Pengtao
    JOURNAL OF SCIENTIFIC COMPUTING, 2021, 87 (03)
  • [3] New mixed finite element methods for the coupled Stokes and Poisson-Nernst-Planck equations in Banach spaces
    Correa, Claudio I.
    Gatica, Gabriel N.
    Ruiz-Baier, Ricardo
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2023, 57 (03) : 1511 - 1551
  • [4] Superconvergence analysis of finite element method for Poisson-Nernst-Planck equations
    Shi, Dongyang
    Yang, Huaijun
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2019, 35 (03) : 1206 - 1223
  • [5] Error analysis of finite element method for Poisson-Nernst-Planck equations
    Sun, Yuzhou
    Sun, Pengtao
    Zheng, Bin
    Lin, Guang
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2016, 301 : 28 - 43
  • [6] A Linearized Local Conservative Mixed Finite Element Method for Poisson-Nernst-Planck Equations
    Gao, Huadong
    Sun, Pengtao
    JOURNAL OF SCIENTIFIC COMPUTING, 2018, 77 (02) : 793 - 817
  • [7] Nonconforming finite element method for coupled Poisson-Nernst-Planck equations
    Shi, Xiangyu
    Lu, Linzhang
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2021, 37 (03) : 2714 - 2729
  • [8] Banach spaces-based mixed finite element methods for the coupled Navier-Stokes and Poisson-Nernst-Planck equations
    Correa, Claudio I.
    Gatica, Gabriel N.
    Henriquez, Esteban
    Ruiz-Baier, Ricardo
    Solano, Manuel
    CALCOLO, 2024, 61 (02)
  • [9] Primal-mixed finite element methods for the coupled Biot and Poisson-Nernst-Planck equations
    Gatica, Gabriel N.
    Inzunza, Cristian
    Ruiz-Baier, Ricardo
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2025, 186 : 53 - 83
  • [10] Mixed Finite Element Method for Modified Poisson–Nernst–Planck/Navier–Stokes Equations
    Mingyan He
    Pengtao Sun
    Journal of Scientific Computing, 2021, 87