Simplifying approach to node classification in Graph Neural Networks

被引:33
|
作者
Maurya, Sunil Kumar [1 ,2 ]
Liu, Xin [2 ]
Murata, Tsuyoshi [1 ,2 ]
机构
[1] Tokyo Inst Technol, Dept Comp Sci, Tokyo, Japan
[2] AIST, Artificial Intelligence Res Ctr, Tokyo, Japan
关键词
Graph Neural Networks; Node classification; Feature selection;
D O I
10.1016/j.jocs.2022.101695
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Graph Neural Networks (GNNs) have become one of the indispensable tools to learn from graph-structured data, and their usefulness has been shown in wide variety of tasks. In recent years, there have been tremendous improvements in architecture design, resulting in better performance on various prediction tasks. In general, these neural architectures combine node feature aggregation and feature transformation using learnable weight matrix in the same layer. This makes it challenging to analyze the importance of node features aggregated from various hops and the expressiveness of the neural network layers. As different graph datasets show varying levels of homophily and heterophily in features and class label distribution, it becomes essential to understand which features are important for the prediction tasks without any prior information. In this work, we decouple the node feature aggregation step and depth of graph neural network, and empirically analyze how different aggregated features play a role in prediction performance. We show that not all features generated via aggregation steps are useful, and often using these less informative features can be detrimental to the performance of the GNN model. Through our experiments, we show that learning certain subsets of these features can lead to better performance on wide variety of datasets. Based on our observations, we introduce several key design strategies for graph neural networks. More specifically, we propose to use softmax as a regularizer and "soft-selector" of features aggregated from neighbors at different hop distances; and L2-Normalization over GNN layers. Combining these techniques, we present a simple and shallow model, Feature Selection Graph Neural Network (FSGNN), and show empirically that the proposed model achieves comparable or even higher accuracy than state-of-the-art GNN models in nine benchmark datasets for the node classification task, with remarkable improvements up to 51.1%. Source code available at https://github.com/sunilkmaurya/FSGNN/.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Ensembling Graph Neural Networks for Node Classification
    Lin, Ke-Ao
    Xie, Xiao-Zhu
    Weng, Wei
    Chen, Yong
    Journal of Network Intelligence, 2024, 9 (02): : 804 - 818
  • [2] On Calibration of Graph Neural Networks for Node Classification
    Liu, Tong
    Liu, Yushan
    Hildebrandt, Marcel
    Joblin, Mitchell
    Li, Hang
    Tresp, Volker
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [3] Exploring Node Classification Uncertainty in Graph Neural Networks
    Islam, Md. Farhadul
    Zabeen, Sarah
    Bin Rahman, Fardin
    Islam, Md. Azharul
    Bin Kibria, Fahmid
    Manab, Meem Arafat
    Karim, Dewan Ziaul
    Rasel, Annajiat Alim
    PROCEEDINGS OF THE 2023 ACM SOUTHEAST CONFERENCE, ACMSE 2023, 2023, : 186 - 190
  • [4] Graph neural networks in node classification: survey and evaluation
    Xiao, Shunxin
    Wang, Shiping
    Dai, Yuanfei
    Guo, Wenzhong
    MACHINE VISION AND APPLICATIONS, 2022, 33 (01)
  • [5] Graph neural networks in node classification: survey and evaluation
    Shunxin Xiao
    Shiping Wang
    Yuanfei Dai
    Wenzhong Guo
    Machine Vision and Applications, 2022, 33
  • [6] Graph alternate learning for robust graph neural networks in node classification
    Zhang, Baoliang
    Guo, Xiaoxin
    Tu, Zhenchuan
    Zhang, Jia
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (11): : 8723 - 8735
  • [7] Graph alternate learning for robust graph neural networks in node classification
    Baoliang Zhang
    Xiaoxin Guo
    Zhenchuan Tu
    Jia Zhang
    Neural Computing and Applications, 2022, 34 : 8723 - 8735
  • [8] Classification optimization node injection attack on graph neural networks
    Ma, Mingda
    Xia, Hui
    Li, Xin
    Zhang, Rui
    Xu, Shuo
    KNOWLEDGE-BASED SYSTEMS, 2024, 301
  • [9] Node classification using kernel propagation in graph neural networks
    Prakash, Sakthi Kumar Arul
    Tucker, Conrad S.
    EXPERT SYSTEMS WITH APPLICATIONS, 2021, 174
  • [10] Similarity-navigated graph neural networks for node classification
    Zou, Minhao
    Gan, Zhongxue
    Cao, Ruizhi
    Guan, Chun
    Leng, Siyang
    INFORMATION SCIENCES, 2023, 633 : 41 - 69