BMO-mappings in the plane

被引:0
作者
Cazacu, CA [1 ]
机构
[1] Univ Bucharest, Fac Math, Bucharest 701091, Romania
来源
TOPICS IN ANALYSIS AND ITS APPLICATIONS | 2004年 / 147卷
关键词
mappings in the plane : quasiconformal (QC); quasiregular (QR); with finite distortion; BMO; -; QR; QC; BMO-bounded distortion; Riemarm and Klein surfaces;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This survey paper presents in the 2-dimensional case recent results which generalize plane quasiconformality and quasiregularity to the case of mappings whose distortion is dominated by a BMO-function. These are the so-called BMO-mappings. After a brief exposure on real BMO-functions in 2 classes of BMO-mappings are discussed in 3. 4 is devoted to BMO-QC and -QR mappings in the sense of Ryazanov, Srebro and Yakubov, and 4 to BMO-BD considered by Astala, Iwaniec, Koskela and Martin. BMO-mappings between Riemann and Klein surfaces are discussed in 4.5.
引用
收藏
页码:11 / 30
页数:20
相关论文
共 62 条
  • [1] AHIFORS LV, 1996, MATH STUDIES, V10
  • [2] On the theory of superimposed surfaces
    Ahlfors, L
    [J]. ACTA MATHEMATICA, 1935, 65 (01) : 157 - 194
  • [3] Alling N.L., 1971, Lecture Notes in Mathematics, V219
  • [4] Andreian Cazacu C., 1971, Proceedings of the Romanian-Finnish seminar on Teichmuller spaces and quasiconformal mappings. Brasov 1969, P65
  • [5] [Anonymous], 1983, TEUBNER TEXTE MATH
  • [6] [Anonymous], 1939, ABH PREUSS AKAD W MN
  • [7] AREA DISTORTION OF QUASI-CONFORMAL MAPPINGS
    ASTALA, K
    [J]. ACTA MATHEMATICA, 1994, 173 (01) : 37 - 60
  • [8] Mappings of BMO-bounded distortion
    Astala, K
    Iwaniec, T
    Koskela, P
    Martin, G
    [J]. MATHEMATISCHE ANNALEN, 2000, 317 (04) : 703 - 726
  • [9] ASTALA K, 1983, MICH MATH J, V30, P209
  • [10] ASTALA K, 1998, DOC MATH J DMV EXTRA, V11, P617