A Method about State-Space Representation and Location Estimation by Computational Geometry
被引:0
|
作者:
Zhang, Yi
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Inst Teclmol, Acad AutoControl, Beijing 100080, Peoples R ChinaBeijing Inst Teclmol, Acad AutoControl, Beijing 100080, Peoples R China
Zhang, Yi
[1
]
Fu, Mengyin
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Inst Teclmol, Acad AutoControl, Beijing 100080, Peoples R ChinaBeijing Inst Teclmol, Acad AutoControl, Beijing 100080, Peoples R China
Fu, Mengyin
[1
]
Wang, Meiling
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Inst Teclmol, Acad AutoControl, Beijing 100080, Peoples R ChinaBeijing Inst Teclmol, Acad AutoControl, Beijing 100080, Peoples R China
Wang, Meiling
[1
]
机构:
[1] Beijing Inst Teclmol, Acad AutoControl, Beijing 100080, Peoples R China
来源:
26TH CHINESE CONTROL AND DECISION CONFERENCE (2014 CCDC)
|
2014年
关键词:
UGV;
SLAM;
computational geometry;
D O I:
暂无
中图分类号:
TP [自动化技术、计算机技术];
学科分类号:
0812 ;
摘要:
This paper analyzes the accuracy concerns of self-positioning of some unmanned ground vehicle that is undertaking simultaneous localization and mapping. The environment information description provided by vehicle sensor usually has strong geometric feature. Thus, the paper puts forward a method with geometric feature for simultaneous localization and mapping environment description. After analyzing the uncertainties in this type of environment description, the paper uses computational geometry to model and describe the uncertainties caused by measuring error of the sensor. At last, by using computational geometry, the paper proposes a location estimation algorithm that helps to reduce the impact of measuring errors on calculation coordinates.