Molecular Orientation Unified Nonfullerene Acceptor Enabling 14% Efficiency As-Cast Organic Solar Cells

被引:60
作者
Feng, Haohao [1 ]
Song, Xin [2 ]
Zhang, Zhuohan [1 ]
Geng, Renyong [1 ]
Yu, Jiangsheng [3 ]
Yang, Linqiang [1 ]
Baran, Derya [2 ]
Tang, Weihua [1 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Chem Engn, Nanjing 210094, Jiangsu, Peoples R China
[2] KAUST, KSC, Thuwal 239556900, Saudi Arabia
[3] Nanjing Univ Sci & Technol, MIIT Key Lab Adv Solid Laser, Nanjing 210094, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
as-cast organic solar cells; dithieno[3,2-b,2 ',3 '-d]pyrrol; molecular orientation; nonfullerene acceptor; thickness insensitive; ACTIVE LAYER; FULLERENE; POLYMER; PERFORMANCE; MORPHOLOGY; DESIGN;
D O I
10.1002/adfm.201903269
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Molecular orientation and pi-pi stacking of nonfullerene acceptors (NFAs) determine its domain size and purity in bulk-heterojunction blends with a polymer donor. Two novel NFAs featuring an indacenobis(dithieno[3,2-b:2MODIFIER LETTER PRIME,3MODIFIER LETTER PRIME-d]pyrrol) core with meta- or para-alkoxyphenyl sidechains are designed and denoted as m-INPOIC or p-INPOIC, respectively. The impact of the alkoxyl group positioning on molecular orientation and photovoltaic performance of NFAs is revealed through a comparison study with the counterpart (INPIC-4F) bearing para-alkylphenyl sidechains. With inward constriction toward the conjugated backbone, m-INPOIC presents predominant face-on orientation to promote charge transport. The as-cast organic solar cells (OSCs) by blending m-INPOIC and PBDB-T as active layers exhibit a power conversion efficiency (PCE) of 12.1%. By introducing PC71BM as the solid processing-aid, the ternary OSCs are further optimized to deliver an impressive PCE of 14.0%, which is among the highest PCEs for as-cast single-junction OSCs reported in literature to date. More attractively, PBDB-T:m-INPOIC:PC71BM based OSCs exhibit over 11% PCEs even with an active layer thickness over 300 nm. And the devices can retain over 95% of PCE after storage for 20 days. The outstanding tolerance to film thickness and outstanding stability of the as-cast devices make m-INPOIC a promising candidate NFA for large-scale solution-processable OSCs.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Dithieno[3,2-b:2′,3′-d]pyrrol Fused Nonfullerene Acceptors Enabling Over 13% Efficiency for Organic Solar Cells
    Sun, Jia
    Ma, Xiaoling
    Zhang, Zhuohan
    Yu, Jiangsheng
    Zhou, Jie
    Yin, Xinxing
    Yang, Linqiang
    Geng, Renyong
    Zhu, Rihong
    Zhang, Fujun
    Tang, Weihua
    ADVANCED MATERIALS, 2018, 30 (16)
  • [32] Surpassing 10% Efficiency Benchmark for Nonfullerene Organic Solar Cells by Scalable Coating in Air from Single Nonhalogenated Solvent
    Ye, Long
    Xiong, Yuan
    Zhang, Qianqian
    Li, Sunsun
    Wang, Cheng
    Jiang, Zhang
    Hou, Jianhui
    You, Wei
    Ade, Harald
    ADVANCED MATERIALS, 2018, 30 (08)
  • [33] 9.73% Efficiency Nonfullerene All Organic Small Molecule Solar Cells with Absorption-Complementary Donor and Acceptor
    Bin, Haijun
    Yang, Yankang
    Zhang, Zhi-Guo
    Ye, Long
    Ghasem, Masoud
    Chen, Shanshan
    Zhang, Yindong
    Zhang, Chunfeng
    Sun, Chenkai
    Xue, Lingwei
    Yang, Changduk
    Ade, Harald
    Li, Yongfang
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2017, 139 (14) : 5085 - 5094
  • [34] Fluorination Triggered New Small Molecule Donor Materials for Efficient As-Cast Organic Solar Cells
    Yang, Yuting
    Wang, Kai
    Li, Gongqiang
    Ran, Xueqin
    Song, Xin
    Gasparini, Nicola
    Zhang, Qian-Qian
    Lai, Xue
    Guo, Xiao
    Meng, Fei
    Du, Mengzhen
    Huang, Wei
    Baran, Derya
    SMALL, 2018, 14 (34)
  • [35] Nonfullerene Acceptor Molecules for Bulk Heterojunction Organic Solar Cells
    Zhang, Guangye
    Zhao, Jingbo
    Chow, Philip C. Y.
    Jiang, Kui
    Zhang, Jianquan
    Zhu, Zonglong
    Zhang, Jie
    Huang, Fei
    Yan, He
    CHEMICAL REVIEWS, 2018, 118 (07) : 3447 - 3507
  • [36] An All-Small-Molecule Organic Solar Cell with High Efficiency Nonfullerene Acceptor
    Kwon, Oh Kyu
    Park, Jung-Hwa
    Kim, Dong Won
    Park, Sang Kyu
    Park, Soo Young
    ADVANCED MATERIALS, 2015, 27 (11) : 1951 - +
  • [37] A High-Efficiency Organic Solar Cell Enabled by the Strong Intramolecular Electron Push-Pull Effect of the Nonfullerene Acceptor
    Li, Wanning
    Ye, Long
    Li, Sunsun
    Yao, Huifeng
    Ade, Harald
    Hou, Jianhui
    ADVANCED MATERIALS, 2018, 30 (16)
  • [38] Atomistic Insight Into Donor/Acceptor Interfaces in High-Efficiency Nonfullerene Organic Solar Cells
    Han, Guangchao
    Guo, Yuan
    Ma, Xiaoyi
    Yi, Yuanping
    SOLAR RRL, 2018, 2 (11):
  • [39] Over 14% Efficiency in Organic Solar Cells Enabled by Chlorinated Nonfullerene Small-Molecule Acceptors
    Zhang, Hao
    Yao, Huifeng
    Hou, Junxian
    Zhu, Jie
    Zhang, Jianqi
    Li, Wanning
    Yu, Runnan
    Gao, Bowei
    Zhang, Shaoqing
    Hou, Jianhui
    ADVANCED MATERIALS, 2018, 30 (28)
  • [40] Molecular optimization of incorporating pyran fused acceptor-donor-acceptor type acceptors enables over 15% efficiency in organic solar cells
    Wu, Simin
    Meng, Lingxian
    Zhang, Zhe
    Li, Mingpeng
    Yang, Yang
    Wang, Jian
    Chen, Hongbin
    Jiang, Changzun
    Wan, Xiangjian
    Li, Chenxi
    Yao, Zhaoyang
    Chen, Yongsheng
    JOURNAL OF MATERIALS CHEMISTRY C, 2022, 10 (06) : 1977 - 1983