Recent developments in miRNA based recombinant protein expression in CHO

被引:4
作者
Bazaz, Masoume [1 ]
Adeli, Ahmad [1 ]
Azizi, Mohammad [1 ]
Soleimani, Masoud [2 ]
Mahboudi, Fereidoun [1 ]
Davoudi, Noushin [1 ]
机构
[1] Pasteur Inst Iran, Biotechnol Res Ctr, Tehran, Iran
[2] Tarbiat Modares Univ, Fac Med Sci, Hematol & Cell Therapy Dept, Tehran, Iran
基金
美国国家科学基金会;
关键词
Cell line development; CHO; Recombinant protein; Productivity; microRNA; Fed batch culture; Biopharma; Gene silencing; MAMMALIAN-CELLS; GENOME; IDENTIFICATION; CULTURE; PRODUCTIVITY; GROWTH; BIOTECHNOLOGY; TEMPERATURE; ANTIBODIES; MICRORNAS;
D O I
10.1007/s10529-022-03250-1
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
It is widely accepted that the growing demand for recombinant therapeutic proteins has led to the expansion of the biopharmaceutical industry and the development of strategies to increase recombinant protein production in mammalian cell lines such as SP2/0 HEK and particularly Chinese hamster ovary cells. For a long time now, most investigations have been focused on increasing host cell productivity using genetic manipulating of cellular processes like cell cycle, apoptosis, cell growth, protein secretory and other pathways. In recent decades MicroRNAs beside different genetic engineering tools (e.g., TALEN, ZFN, and Crisper/Cas) have attracted further attention as a tool in the genetic engineering of host cells to increase protein expression levels. Their ability to simultaneously target multiple mRNAs involved in one or more cellular processes made them a favorable tool in this field. Accordingly, this study aimed to review the methods of selecting target miRNA for cell line engineering, miRNA gain- or loss-of-function strategies, examples of laboratory and pilot studies in this field and discussed advantages and disadvantages of this technology.
引用
收藏
页码:671 / 681
页数:11
相关论文
共 82 条
[1]  
Aguiar T. Q., 2019, Proteins: Sustainable source, processing and applications, P259, DOI [10.1016/B978-0-12-816695-6.00009-X, DOI 10.1016/B978-0-12-816695-6.00009-X]
[2]   Inhibition of endogenous miR-23a/miR-377 in CHO cells enhances difficult-to-express recombinant lysosomal sulfatase activity [J].
Amadi, Ifeanyi Michael ;
Agrawal, Vishal ;
Christianson, Terri ;
Bardliving, Cameron ;
Shamlou, Parviz ;
LeBowitz, Jonathan H. .
BIOTECHNOLOGY PROGRESS, 2020, 36 (03)
[3]   Genetic engineering approaches to improve posttranslational modification of biopharmaceuticals in different production platforms [J].
Amann, Thomas ;
Schmieder, Valerie ;
Kildegaard, Helene Faustrup ;
Borth, Nicole ;
Andersen, Mikael Rordam .
BIOTECHNOLOGY AND BIOENGINEERING, 2019, 116 (10) :2778-2796
[4]   CRISPR/Cas9-Multiplexed Editing of Chinese Hamster Ovary B4Gal-T1, 2, 3, and 4 Tailors N-Glycan Profiles of Therapeutics and Secreted Host Cell Proteins [J].
Amann, Thomas ;
Hansen, Anders Holmgaard ;
Kol, Stefan ;
Lee, Gyun Min ;
Andersen, Mikael Rordam ;
Kildegaard, Helene Faustrup .
BIOTECHNOLOGY JOURNAL, 2018, 13 (10)
[5]   Molecular definition of predictive indicators of stable protein expression in recombinant NSO myeloma cells [J].
Barnes, LM ;
Bentley, CM ;
Dickson, AJ .
BIOTECHNOLOGY AND BIOENGINEERING, 2004, 85 (02) :115-121
[6]   Generation of Genomic Deletions in Mammalian Cell Lines via CRISPR/Cas9 [J].
Bauer, Daniel E. ;
Canver, Matthew C. ;
Orkin, Stuart H. .
JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2015, (95)
[7]   Chinese hamster genome sequenced from sorted chromosomes [J].
Brinkrolf, Karina ;
Rupp, Oliver ;
Laux, Holger ;
Kollin, Florian ;
Ernst, Wolfgang ;
Linke, Burkhard ;
Kofler, Rudolf ;
Romand, Sandrine ;
Hesse, Friedemann ;
Budach, Wolfgang E. ;
Galosy, Sybille ;
Mueller, Dethardt ;
Noll, Thomas ;
Wienberg, Johannes ;
Jostock, Thomas ;
Leonard, Mark ;
Grillari, Johannes ;
Tauch, Andreas ;
Goesmann, Alexander ;
Helk, Bernhard ;
Mott, John E. ;
Puehler, Alfred ;
Borth, Nicole .
NATURE BIOTECHNOLOGY, 2013, 31 (08) :694-695
[8]   The emerging role of cellular post-translational modifications in modulating growth and productivity of recombinant Chinese hamster ovary cells [J].
Bryan, Laura ;
Clynes, Martin ;
Meleady, Paula .
BIOTECHNOLOGY ADVANCES, 2021, 49
[9]   Combating viral contaminants in CHO cells by engineering innate immunity [J].
Chiang, Austin W. T. ;
Li, Shangzhong ;
Kellman, Benjamin P. ;
Chattopadhyay, Gouri ;
Zhang, Yaqin ;
Kuo, Chih-Chung ;
Gutierrez, Jahir M. ;
Ghazi, Faeazeh ;
Schmeisser, Hana ;
Menard, Patrice ;
Bjorn, Sara Petersen ;
Voldborg, Bjrn G. ;
Rosenberg, Amy S. ;
Puig, Montserrat ;
Lewis, Nathan E. .
SCIENTIFIC REPORTS, 2019, 9 (1)
[10]   Genome-wide analysis of long noncoding RNA stability [J].
Clark, Michael B. ;
Johnston, Rebecca L. ;
Inostroza-Ponta, Mario ;
Fox, Archa H. ;
Fortini, Ellen ;
Moscato, Pablo ;
Dinger, Marcel E. ;
Mattick, John S. .
GENOME RESEARCH, 2012, 22 (05) :885-898