Cluster analysis of long time-series medical datasets

被引:0
作者
Hirano, S [1 ]
Tsumoto, S [1 ]
机构
[1] Shimane Univ, Dept Med Informat, Sch Med, Izumo, Shimane 6938501, Japan
来源
DATA MINING AND KNOWLEDGE DISCOVERY: THEORY, TOOLS, AND TECHNOLOGY VI | 2004年 / 5433卷
关键词
time-series analysis; clustering; multiscale matching; DTW;
D O I
10.1117/12.542931
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a comparative study about the characteristics of clustering methods for inhomogeneous time-series medical datasets. Using various combinations of comparison methods and grouping methods, we performed clustering experiments of the hepatitis data set and evaluated validity of the results. The results suggested that (1) complete-linkage (CL) criterion in agglomerative hierarchical clustering (AHC) outperformed average-linkage (AL) criterion in terms of the interpretability of a dendrogram and clustering results, (2) combination of dynamic time warping (DTW) and CL-AHC constantly produced interpretable results, (3) combination of DTW and rough clustering (RC) would be used to find the core sequences of the clusters, (4) multiscale matching may suffer from the treatment of 'no-match' pairs, however, the problem may be eluded by using RC as a subsequent grouping method.
引用
收藏
页码:13 / 20
页数:8
相关论文
共 50 条
  • [41] BACKPROPAGATION IN TIME-SERIES FORECASTING
    LACHTERMACHER, G
    FULLER, JD
    JOURNAL OF FORECASTING, 1995, 14 (04) : 381 - 393
  • [42] Comparison of similarity measures and clustering methods for time-series medical data mining
    Hirano, S
    Tsumoto, S
    DATA MINING AND KNOWLEDGE DISCOVERY: TOOLS AND TECHNOLOGY V, 2003, 5098 : 219 - 225
  • [43] Singular spectrum time-series analysis and continuous transformation groups
    Nilsson, M
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2004, 460 (2043): : 929 - 938
  • [44] TIME-SERIES ANALYSIS OF THE INTERDEPENDENCE AMONG AIR-POLLUTANTS
    HSU, KJ
    ATMOSPHERIC ENVIRONMENT PART B-URBAN ATMOSPHERE, 1992, 26 (04): : 491 - 503
  • [45] On the Effect of Adaptive and Nonadaptive Analysis of Time-Series Sensory Data
    Kolozali, Sefki
    Puschmann, Daniel
    Bermudez-Edo, Maria
    Barnaghi, Payam
    IEEE INTERNET OF THINGS JOURNAL, 2016, 3 (06): : 1084 - 1098
  • [46] Modeling activity patterns of wildlife using time-series analysis
    Zhang, Jindong
    Hull, Vanessa
    Ouyang, Zhiyun
    He, Liang
    Connor, Thomas
    Yang, Hongbo
    Huang, Jinyan
    Zhou, Shiqiang
    Zhang, Zejun
    Zhou, Caiquan
    Zhang, Hemin
    Liu, Jianguo
    ECOLOGY AND EVOLUTION, 2017, 7 (08): : 2575 - 2584
  • [47] TIME-SERIES ANALYSIS OF BRAIN POTENTIALS PRECEDING VOLUNTARY MOVEMENTS
    POPIVANOV, D
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 1992, 30 (01) : 9 - 14
  • [48] TIME-SERIES ANALYSIS MODELS OF ACTIVATED-SLUDGE PLANTS
    NOVOTNY, V
    JONES, H
    FENG, X
    CAPODAGLIO, A
    WATER SCIENCE AND TECHNOLOGY, 1991, 23 (4-6) : 1107 - 1116
  • [49] TSViz: Demystification of Deep Learning Models for Time-Series Analysis
    Siddiqui, Shoaib Ahmed
    Mercier, Dominique
    Munir, Mohsin
    Dengel, Andreas
    Ahmed, Sheraz
    IEEE ACCESS, 2019, 7 : 67027 - 67040
  • [50] Biofeedback in the Treatment of Phantom Limb Pain: A Time-Series Analysis
    R. Norman Harden
    Timothy T. Houle
    Samara Green
    Thomas A. Remble
    Stephan R. Weinland
    Sean Colio
    Jeffrey Lauzon
    Todd Kuiken
    Applied Psychophysiology and Biofeedback, 2005, 30 : 83 - 93