Cluster analysis of long time-series medical datasets

被引:0
作者
Hirano, S [1 ]
Tsumoto, S [1 ]
机构
[1] Shimane Univ, Dept Med Informat, Sch Med, Izumo, Shimane 6938501, Japan
来源
DATA MINING AND KNOWLEDGE DISCOVERY: THEORY, TOOLS, AND TECHNOLOGY VI | 2004年 / 5433卷
关键词
time-series analysis; clustering; multiscale matching; DTW;
D O I
10.1117/12.542931
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a comparative study about the characteristics of clustering methods for inhomogeneous time-series medical datasets. Using various combinations of comparison methods and grouping methods, we performed clustering experiments of the hepatitis data set and evaluated validity of the results. The results suggested that (1) complete-linkage (CL) criterion in agglomerative hierarchical clustering (AHC) outperformed average-linkage (AL) criterion in terms of the interpretability of a dendrogram and clustering results, (2) combination of dynamic time warping (DTW) and CL-AHC constantly produced interpretable results, (3) combination of DTW and rough clustering (RC) would be used to find the core sequences of the clusters, (4) multiscale matching may suffer from the treatment of 'no-match' pairs, however, the problem may be eluded by using RC as a subsequent grouping method.
引用
收藏
页码:13 / 20
页数:8
相关论文
共 50 条
  • [1] Cluster analysis of biomedical image time-series
    Wismüller, A
    Lange, O
    Dersch, DR
    Leinsinger, GL
    Hahn, K
    Pütz, B
    Auer, D
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2002, 46 (02) : 103 - 128
  • [2] Cluster Analysis of Biomedical Image Time-Series
    Axel Wismüller
    Oliver Lange
    Dominik R. Dersch
    Gerda L. Leinsinger
    Klaus Hahn
    Benno Pütz
    Dorothee Auer
    International Journal of Computer Vision, 2002, 46 : 103 - 128
  • [3] A Primer for Microbiome Time-Series Analysis
    Coenen, Ashley R.
    Hu, Sarah K.
    Luo, Elaine
    Muratore, Daniel
    Weitz, Joshua S.
    FRONTIERS IN GENETICS, 2020, 11
  • [4] Data mining of time-series medical data by formal concept analysis
    Sato, Kenji
    Okubo, Yoshiaki
    Haraguchi, Iakoto
    Kunifuji, Susumu
    KNOWLEDGE-BASED INTELLIGENT INFORMATION AND ENGINEERING SYSTEMS: KES 2007 - WIRN 2007, PT II, PROCEEDINGS, 2007, 4693 : 1214 - 1221
  • [5] A Framework for Time-Series Analysis
    Kurbalija, Vladimir
    Radovanovic, Milos
    Geler, Zoltan
    Ivanovic, Mirjana
    ARTIFICIAL INTELLIGENCE: METHODOLOGY, SYSTEMS, AND APPLICATIONS, AIMSA 2010, 2010, 6304 : 42 - 51
  • [6] NetFlow Anomaly Detection Though Parallel Cluster Density Analysis in Continuous Time-Series
    Flanagan, Kieran
    Fallon, Enda
    Connolly, Paul
    Awad, Abir
    WIRED/WIRELESS INTERNET COMMUNICATIONS, WWIC 2017, 2017, 10372 : 221 - 232
  • [7] Time-series analysis of Langmuir bursts
    Theisen, WL
    Carpenter, RT
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 2000, 28 (02) : 414 - 417
  • [8] ENVIRONMETRIC TIME-SERIES ANALYSIS - MODELING NATURAL SYSTEMS FROM EXPERIMENTAL TIME-SERIES DATA
    YOUNG, PC
    MINCHIN, PEH
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 1991, 13 (03) : 190 - 201
  • [9] Approximate Clustering of Time-Series Datasets using k-Modes Partitioning
    Aghabozorgi, Saeed
    Teh Ying Wah
    JOURNAL OF INFORMATION SCIENCE AND ENGINEERING, 2015, 31 (01) : 207 - 228
  • [10] Physical Activity Pattern of Adults With Metabolic Syndrome Risk Factors: Time-Series Cluster Analysis
    Kim, Junhyoung
    Choi, Jin-Young
    Kim, Hana
    Lee, Taeksang
    Ha, Jaeyoung
    Lee, Sangyi
    Park, Jungmi
    Jeon, Gyeong-Suk
    Cho, Sung-il
    JMIR MHEALTH AND UHEALTH, 2023, 11