Multifractal vector optical fields

被引:1
作者
Zhao, Meng-Dan [1 ,2 ]
Gao, Xu-Zhen [5 ]
Wang, Qiang [1 ,2 ]
Zhang, Guan-Lin [1 ,2 ]
Wang, Ke [1 ,2 ]
Dai, Fan [1 ,2 ]
Wang, Dan [1 ,2 ]
Li, Yongnan [1 ,2 ]
Tu, Chenghou [1 ,2 ]
Wang, Hui-Tian [3 ,4 ]
机构
[1] Nankai Univ, Sch Phys, Tianjin 300071, Peoples R China
[2] Nankai Univ, Key Lab Weak Light Nonlinear Photon, Tianjin 300071, Peoples R China
[3] Nanjing Univ, Natl Lab Solid State Microstruct, Nanjing 210093, Jiangsu, Peoples R China
[4] Collaborat Innovat Ctr Adv Microstruct, Nanjing 210093, Jiangsu, Peoples R China
[5] Qufu Normal Univ, Sch Phys & Phys Engn, Shandong Prov Key Lab Laser Polarizat & Informati, Qufu 273165, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
BEAMS; SPECTRUM; LIGHT;
D O I
10.1364/OE.27.020608
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We introduce the concept of multifractal into vector optical fields (VOFs). We propose, design and generate new fractal VOFs-multifractal VOFs (MF-VOFs), in which multifractal structure and VOF act as the lattice and the base, respectively. We generate two kinds of MF-VOFs experimentally and explore their focusing behaviors. We also investigate the self-healing and information recovering abilities of MF-VOFs, comparing with those of single-fractal VOFs (SF-VOFs) when their lattices are composed of the same hierarchy of fractal geometries. The results show that MF-VOFs have better self-healing and information recovering abilities than that of traditional SF-VOFs, meaning that MF-VOFs have better ability to resist the information loss during the focusing and imaging processes. These properties may find potential applications in information transmission, optical communication, and so on. (C) 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:20608 / 20620
页数:13
相关论文
共 35 条
[1]   Multifractality of laser beam spatial intensity in a turbulent medium [J].
Barille, Regis ;
LaPenna, Paolo .
APPLIED OPTICS, 2006, 45 (14) :3331-3339
[2]   MULTIFRACTAL DECOMPOSITIONS OF MORAN FRACTALS [J].
CAWLEY, R ;
MAULDIN, RD .
ADVANCES IN MATHEMATICS, 1992, 92 (02) :196-236
[3]   Polarization anisotropic transmission through metallic Sierpinski-Carpet aperture array [J].
Chen, Yuan ;
Zhan, Li ;
Wu, Jian ;
Wang, Tianmeng .
OPTICS EXPRESS, 2014, 22 (03) :2222-2227
[4]   Depth-based dynamic lightness adjustment power-saving algorithm for AMOLED in head-mounted display [J].
Chondro, Peter ;
Yao, Zun-Rong ;
Ruan, Shanq-Jang .
OPTICS EXPRESS, 2018, 26 (25) :33158-33165
[5]   Relativistic scattering from moving fractally corrugated surfaces [J].
De Cupis, P .
OPTICS LETTERS, 2003, 28 (10) :849-850
[6]   Anomalous Spatial Diffusion and Multifractality in Optical Lattices [J].
Dechant, Andreas ;
Lutz, Eric .
PHYSICAL REVIEW LETTERS, 2012, 108 (23)
[7]   Snapshot hyperspectral imaging via spectral basis multiplexing in Fourier domain [J].
Deng, Chao ;
Hu, Xuemei ;
Suo, Jinli ;
Zhang, Yuanlong ;
Zhang, Zhili ;
Dai, Qionghai .
OPTICS EXPRESS, 2018, 26 (25) :32509-32521
[8]   Focusing behavior of the fractal vector optical fields designed by fractal lattice growth model [J].
Gao, Xu-Zhen ;
Pan, Yue ;
Zhao, Meng-Dan ;
Zhang, Guan-Lin ;
Zhang, Yu ;
Tu, Chenghou ;
Li, Yongnan ;
Wang, Hui-Tian .
OPTICS EXPRESS, 2018, 26 (02) :1597-1614
[9]   Multifractal zone plates [J].
Gimenez, Fernando ;
Furlan, Walter D. ;
Calatayud, Arnau ;
Monsoriu, Juan A. .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2010, 27 (08) :1851-1855
[10]  
Harte D., 2001, MULTIFRACTALS THEORY