Theoretical and experimental quantum efficiencies of the growth of anoxygenic phototrophic bacteria

被引:3
|
作者
Minkevich, IG [1 ]
Laurinavichene, TV
Tsygankov, AA
机构
[1] Russian Acad Sci, Inst Biochem & Physiol Microorganisms, Pushchino 142290, Moscow Region, Russia
[2] Russian Acad Sci, Inst Basic Biol Problems, Pushchino 142290, Moscow Region, Russia
基金
俄罗斯基础研究基金会;
关键词
theoretical and experimental quantum yield; Rhodobacter capsulatus; anoxygenic phototrophic bacteria; metabolism; bioenergetic; photosynthesis; culture growth; mathematical model;
D O I
10.1016/S0032-9592(03)00213-9
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
This work is devoted to investigation of regularities of mass-energy balance of purple bacteria photorophic growth. Estimates of culture growth efficiency were derived from bioenergetic properties of cell metabolism. An equation system describing joint balance of flows of metabolite reductivity, high-energy protons (HEP) and high-energy bonds (HEB) was formulated. The maximum cell yield from light and the rate of energy expenditure for cell maintenance were found as mathematical expressions containing metabolic stoichiometric coefficients, rates of energy losses and intracellular matter turnover. Experimental study was conducted with a purple bacterium Rhodobacter capsulatus grown continuously on hydrogen at different illumination intensities. The obtained numerical estimates of attainable maximum growth yield were compared with experimental data both taken from literature and obtained in this work. Theoretical and experimental yield values showed good agreement. (C) 2003 Elsevier Ltd. All rights reserved.
引用
收藏
页码:939 / 949
页数:11
相关论文
共 50 条
  • [1] Aerobic anoxygenic phototrophic bacteria
    Yurkov, VV
    Beatty, JT
    MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, 1998, 62 (03) : 695 - +
  • [2] Biotechnology of Anoxygenic Phototrophic Bacteria
    Frigaard, Niels-Ulrik
    ANAEROBES IN BIOTECHNOLOGY, 2016, 156 : 139 - 154
  • [3] Anoxygenic phototrophic bacteria of waste waters
    Munjam, S
    Vasavi, D
    Girisham, S
    Reddy, SM
    PERSPECTIVES IN BIOTECHNOLOGY, 2001, : 163 - 170
  • [4] THE QUANTUM REQUIREMENT FOR H-2 PRODUCTION BY ANOXYGENIC PHOTOTROPHIC BACTERIA
    WARTHMANN, R
    PFENNIG, N
    CYPIONKA, H
    APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 1993, 39 (03) : 358 - 362
  • [5] Production of amylases (α and β) by anoxygenic phototrophic bacteria
    Munjam, Srinivas
    Vasavi, D.
    Girisham, S.
    Reddy, S.M.
    Journal of Food Science and Technology, 2003, 40 (05) : 505 - 508
  • [6] Carbonic Anhydrase in Anoxygenic Phototrophic Bacteria
    R. N. Ivanovsky
    O. I. Keppen
    N. V. Lebedeva
    D. S. Gruzdev
    Microbiology, 2020, 89 : 266 - 272
  • [7] Carbonic Anhydrase in Anoxygenic Phototrophic Bacteria
    Ivanovsky, R. N.
    Keppen, I
    Lebedeva, N., V
    Gruzdev, D. S.
    MICROBIOLOGY, 2020, 89 (03) : 266 - 272
  • [8] Production of amylases (α and β) by anoxygenic phototrophic bacteria
    Munjam, S
    Vasavi, D
    Girisham, S
    Reddy, SM
    JOURNAL OF FOOD SCIENCE AND TECHNOLOGY-MYSORE, 2003, 40 (05): : 505 - 508
  • [9] High temperature accelerates growth of aerobic anoxygenic phototrophic bacteria in seawater
    Sato-Takabe, Yuki
    Hamasaki, Koji
    Suzuki, Satoru
    MICROBIOLOGYOPEN, 2019, 8 (05):
  • [10] FERROUS IRON OXIDATION BY ANOXYGENIC PHOTOTROPHIC BACTERIA
    WIDDEL, F
    SCHNELL, S
    HEISING, S
    EHRENREICH, A
    ASSMUS, B
    SCHINK, B
    NATURE, 1993, 362 (6423) : 834 - 836