The L2 Essential Spectrum of the 2D Euler Operator

被引:3
作者
Cox, Graham [1 ]
机构
[1] Univ N Carolina, Dept Math, Chapel Hill, NC 27599 USA
基金
美国国家科学基金会;
关键词
Euler equation; essential spectrum; Coarea formula; INSTABILITY;
D O I
10.1007/s00021-014-0165-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Even in two dimensions, the spectrum of the linearized Euler operator is notoriously hard to compute. In this paper we give a new geometric calculation of the essential spectrum for 2D flows. This generalizes existing results-which are only available when the flow has arbitrarily long periodic orbits-and clarifies the role of individual streamlines in generating essential spectra.
引用
收藏
页码:419 / 429
页数:11
相关论文
共 19 条
  • [1] [Anonymous], J MATH FLUID MECH
  • [2] [Anonymous], COMM MATH PHYS
  • [3] [Anonymous], 1995, INTRO PARTIAL DIFFER
  • [4] [Anonymous], J MECANIQUE
  • [5] [Anonymous], GRADUATE TEXTS MATH
  • [6] [Anonymous], 1963, ANN MATH STUD
  • [7] [Anonymous], GEOFYS PUBL NORSKE V
  • [8] [Anonymous], 1987, OXFORD MATH MONOGRAP
  • [9] A necessary and sufficient instability condition for inviscid shear flow
    Balmforth, NJ
    Morrison, PJ
    [J]. STUDIES IN APPLIED MATHEMATICS, 1999, 102 (03) : 309 - 344
  • [10] The unstable spectrum of oscillating shear flows
    Belenkaya, L
    Friedlander, S
    Yudovich, V
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 1999, 59 (05) : 1701 - 1715