Continuum Nanofluidics

被引:31
作者
Hansen, Jesper S. [1 ]
Dyre, Jeppe C. [1 ]
Daivis, Peter [2 ]
Todd, Billy D. [3 ,4 ]
Bruus, Henrik [5 ]
机构
[1] Roskilde Univ, Dept Sci, IMFUFA, DNRF Ctr Glass & Time, DK-4000 Roskilde, Denmark
[2] RMIT Univ, Sch Appl Sci, Appl Phys, Melbourne, Vic 3001, Australia
[3] Swinburne Univ Technol, Fac Sci Engn & Technol, Dept Math, Hawthorn, Vic 3122, Australia
[4] Swinburne Univ Technol, Ctr Mol Simulat, Hawthorn, Vic 3122, Australia
[5] Tech Univ Denmark, Dept Phys, DK-2800 Lyngby, Denmark
基金
新加坡国家研究基金会;
关键词
MOLECULAR-DYNAMICS; STATISTICAL-MECHANICS; ANGULAR-MOMENTUM; SHEAR VISCOSITY; VISCOUS-FLOW; FLUID; THERMODYNAMICS; TRANSPORT; HYDRODYNAMICS; EQUATIONS;
D O I
10.1021/acs.langmuir.5b02237
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This paper introduces the fundamental continuum theory governing momentum transport in isotropic nanofluidic systems. The theory is an extension of the classical Navier-Stokes equation, and includes coupling between translational and rotational degrees of freedom as well as nonlocal response functions that incorporate spatial correlations. The continuum theory is compared with molecular dynamics simulation data for both relaxation processes and fluid flows, showing excellent agreement on the nanometer length scale. We also present practical tools to estimate when the extended theory should be used. It is shown that in the wall-fluid region the fluid molecules align with the wall, and in this region the isotropic model may fail and a full anisotropic description is necessary.
引用
收藏
页码:13275 / 13289
页数:15
相关论文
共 80 条
[41]   Viscous properties of isotropic fluids composed of linear molecules: Departure from the classical Navier-Stokes theory in nano-confined geometries [J].
Hansen, J. S. ;
Daivis, Peter J. ;
Todd, B. D. .
PHYSICAL REVIEW E, 2009, 80 (04)
[42]   Local linear viscoelasticity of confined fluids [J].
Hansen, J. S. ;
Daivis, P. J. ;
Todd, B. D. .
JOURNAL OF CHEMICAL PHYSICS, 2007, 126 (14)
[43]   Density dependence of the stress relaxation function of a simple fluid [J].
Hartkamp, Remco ;
Daivis, Peter J. ;
Todd, B. D. .
PHYSICAL REVIEW E, 2013, 87 (03)
[44]   Shear viscosity of inhomogeneous fluids [J].
Hoang, Hai ;
Galliero, Guillaume .
JOURNAL OF CHEMICAL PHYSICS, 2012, 136 (12)
[45]   THE STATISTICAL MECHANICAL THEORY OF TRANSPORT PROCESSES .4. THE EQUATIONS OF HYDRODYNAMICS [J].
IRVING, JH ;
KIRKWOOD, JG .
JOURNAL OF CHEMICAL PHYSICS, 1950, 18 (06) :817-829
[46]   Hydrodynamic equations and correlation functions (Reprinted from Annals of Physics, vol 24, pg 419-469, 1963) [J].
Kadanoff, LP ;
Martin, PC .
ANNALS OF PHYSICS, 2000, 281 (1-2) :800-852
[47]  
Karniadakis G.E., 2005, Microflows and Nanoflows - Fundamentals and Simulation
[48]  
Landau L., 1959, Fluid mechanics
[49]  
Lauga E., 2007, Springer handbook of experimental fluid mechanics, DOI [DOI 10.1007/978-3-540-30299-5_19, 10.1007/978-3-540-30299-5_19]
[50]  
Lukaszewics G., 1999, MICROPOLAR FLUIDS TH