Role of abscisic acid in strigolactone-induced salt stress tolerance in arbuscular mycorrhizal Sesbania cannabina seedlings

被引:82
|
作者
Ren, Cheng-Gang [1 ]
Kong, Cun-Cui [1 ]
Xie, Zhi-Hong [1 ]
机构
[1] Chinese Acad Sci, Yantai Inst Coastal Zone Res, Key Lab Biol & Utilizat Biol Resources Coastal Zo, Yantai 264003, Peoples R China
来源
BMC PLANT BIOLOGY | 2018年 / 18卷
基金
中国国家自然科学基金;
关键词
Strigolactones; Abscisic acid arbuscular mycorrhizal; Sesbania cannabina; Photosynthesis; Salt stress; HYDROGEN-PEROXIDE; DROUGHT TOLERANCE; PLANT-RESPONSES; BIOSYNTHESIS; FUNGI; ABA; SALINITY; LETTUCE; SIGNALS; ROOTS;
D O I
10.1186/s12870-018-1292-7
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Background: Strigolactones (SLs) are considered to be a novel class of phytohormone involved in plant defense responses. Currently, their relationships with other plant hormones, such as abscisic acid (ABA), during responses to salinity stress are largely unknown. Results: In this study, the relationship between SL and ABA during the induction of H2O2 - mediated tolerance to salt stress were studied in arbuscular mycorrhizal (AM) Sesbania cannabina seedlings. The SL levels increased after ABA treatments and decreased when ABA biosynthesis was inhibited in AM plants. Additionally, the expression levels of SL-biosynthesis genes in AM plants increased following treatments with exogenous ABA and H2O2. Furthermore, ABA-induced SL production was blocked by a pre-treatment with dimethylthiourea, which scavenges H2O2. In contrast, ABA production was unaffected by dimethylthiourea. Abscisic acid induced only partial and transient increases in the salt tolerance of 115108 (a SL synthesis inhibitor) treated AM plants, whereas SL induced considerable and prolonged increases in salt tolerance after a pre-treatment with tungstate. Conclusions: These results strongly suggest that ABA is regulating the induction of salt tolerance by SL in AM S. cannabina seedlings.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Label-free quantitative proteomics of arbuscular mycorrhizal Elaeagnus angustifolia seedlings provides insights into salt-stress tolerance mechanisms
    Chang, Wei
    Zhang, Yan
    Ping, Yuan
    Li, Kun
    Qi, Dan-Dan
    Song, Fu-Qiang
    FRONTIERS IN PLANT SCIENCE, 2023, 13
  • [22] Salt and drought stress in wheat and the role of abscisic acid
    Bano, A
    Aziz, N
    PAKISTAN JOURNAL OF BOTANY, 2003, 35 (05) : 871 - 883
  • [23] Drought tolerance induced by a combination of abscisic acid and abscinazole in apple seedlings
    Wang, L. W.
    Li, X. X.
    Todoroki, Y.
    Kondo, S.
    III ASIAN HORTICULTURAL CONGRESS (AHC2020), 2021, 1312 : 181 - 188
  • [24] Salt acclimation induced salt tolerance is enhanced by abscisic acid priming in wheat
    Wang, Zongshuai
    Li, Xiangnan
    Zhu, Xiancan
    Liu, Shengqun
    Song, Fengbin
    Liu, Fulai
    Wang, Yang
    Qi, Xiaoning
    Wang, Fahong
    Zuo, Zhiyu
    Duan, Peizi
    Yang, Aizheng
    Cai, Jian
    Jiang, Dong
    PLANT SOIL AND ENVIRONMENT, 2017, 63 (07) : 307 - 314
  • [25] Mitigation of salt stress by dual application of arbuscular mycorrhizal fungi and salicylic acid
    Abdelhameed, R. E.
    Metwally, R. A.
    AGROCHIMICA, 2018, 62 (04): : 353 - 366
  • [26] The photoprotective role of arbuscular mycorrhizal fungi (AMF) in cucumber seedlings under cold stress
    Ma, Jun
    Janouskova, M.
    Yan, Yan
    Yu, Xianchang
    Zou, Zhirong
    Li, Yansu
    He, Chaoxing
    II ASIAN HORTICULTURAL CONGRESS, 2018, 1208 : 305 - 318
  • [27] Role of abscisic acid in water stress-induced antioxidant defense in leaves of maize seedlings
    Jiang, MY
    Zhang, JH
    FREE RADICAL RESEARCH, 2002, 36 (09) : 1001 - 1015
  • [28] Response of Pistacia vera L. in salt tolerance to inoculation with arbuscular mycorrhizal fungi under salt stress
    Abbaspour, H.
    Fallahyan, F.
    Fahimi, H.
    Afshari, H.
    PROCEEDINGS OF THE IVTH INTERNATIONAL SYMPOSIUM ON PISTACHIOS AND ALMONDS, 2006, (726): : 383 - +
  • [29] Proteomics Analysis of E. angustifolia Seedlings Inoculated with Arbuscular Mycorrhizal Fungi under Salt Stress
    Jia, Tingting
    Wang, Jian
    Chang, Wei
    Fan, Xiaoxu
    Sui, Xin
    Song, Fuqiang
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2019, 20 (03)
  • [30] Arbuscular mycorrhizal fungi improve the growth and drought tolerance of Zenia insignis seedlings under drought stress
    Zhongfeng Zhang
    Jinchi Zhang
    Guangping Xu
    Longwu Zhou
    Yanqiong Li
    New Forests, 2019, 50 : 593 - 604