Effects of Isothermal Aging on Microstructure and Mechanical Property of Low-Carbon RAFM Steel

被引:18
|
作者
Chen, Jian-Guo [1 ,2 ]
Liu, Chen-Xi [1 ]
Wei, Chen [2 ]
Liu, Yong-Chang [1 ]
Li, Hui-Jun [1 ]
机构
[1] Tianjin Univ, Sch Mat Sci & Engn, State Key Lab Hydraul Engn Simulat & Safety, Tianjin 300350, Peoples R China
[2] Tianjin Special Equipment Inspect Inst, Tianjin 300192, Peoples R China
基金
中国国家自然科学基金;
关键词
Low-carbon RAFM steel; Isothermal aging; Microstructure evolution; Mechanical property; REDUCED-ACTIVATION STEELS; HIGH-TEMPERATURE CREEP; LAVES PHASE; PRECIPITATION BEHAVIOR; AUSTENITIC STEEL; STAINLESS-STEEL; TERM CREEP; EVOLUTION; STRENGTH; TANTALUM;
D O I
10.1007/s40195-019-00883-6
中图分类号
TF [冶金工业];
学科分类号
0806 ;
摘要
In order to investigate the microstructure and mechanical property evolution of low-carbon reduced activation ferritic/martensitic (RAFM) steel during isothermal aging, the normalized and tempered specimens were aged at 600 degrees C for 500, 1000, and 3000h, respectively. The microstructural evolution with aging time was analyzed, including the precipitation and growth of M23C6 and MX-type carbides as well as the formation of Laves phase. The results indicate that the coarsening of M23C6 is more obvious than that of MX with increase in aging time. During the long-term thermal exposure, the Fe2W Laves phase precipitates adjacent to M23C6 along the prior austenite grain boundaries and packet boundaries. Lower carbon content can delay the precipitation of Laves phase compared to the steel containing higher carbon. In addition, the Laves phase precipitated along boundaries can provide the precipitation strengthening, slightly increasing the tensile strength of low-carbon RAFM steel after aging for 3000h.
引用
收藏
页码:1151 / 1160
页数:10
相关论文
共 50 条
  • [21] Influence of high deformation on the microstructure of low-carbon steel
    Popa, Florin
    Chicinas, Ionel
    Frunza, Dan
    Nicodim, Ioan
    Banabic, Dorel
    INTERNATIONAL JOURNAL OF MINERALS METALLURGY AND MATERIALS, 2014, 21 (03) : 273 - 278
  • [22] Microstructure and Mechanical Properties of Low-Carbon Q235 Steel Welded Using Friction Stir Welding
    Wang, Hongduo
    Wang, Kuaishe
    Wang, Wen
    Lu, Yongxin
    Peng, Pai
    Han, Peng
    Qiao, Ke
    Liu, Zhihao
    Wang, Lei
    ACTA METALLURGICA SINICA-ENGLISH LETTERS, 2020, 33 (11) : 1556 - 1570
  • [23] Studying the impact of multi-pass friction stir processing on microstructure and mechanical properties of low-carbon steel
    Moradi, Moein
    Khalaj, Gholamreza
    Ghaffari, Gholamreza
    Abdolmaleki, Bahram
    KOVOVE MATERIALY-METALLIC MATERIALS, 2023, 61 (03): : 161 - 173
  • [24] Study on microstructural evolution and constitutive modeling for hot deformation behavior of a low-carbon RAFM steel
    Chen, Jianguo
    Liu, Yongchang
    Liu, Chenxi
    Zhou, Xiaosheng
    Li, Huijun
    JOURNAL OF MATERIALS RESEARCH, 2017, 32 (07) : 1376 - 1385
  • [25] Effect of Deformation-Thermal Processing on the Microstructure and Mechanical Properties of Low-Carbon Structural Steel
    Sergeev, S. N.
    Safarov, I. M.
    Zhilyaev, A. P.
    Galeev, R. M.
    Gladkovskii, S. V.
    Dvoinikov, D. A.
    PHYSICS OF METALS AND METALLOGRAPHY, 2021, 122 (06) : 621 - 627
  • [26] Microstructure and Mechanical Properties of Friction Stir Welded Q235 Low-Carbon Steel
    Zhou, L.
    Zhang, R. X.
    Yang, H. F.
    Huang, Y. X.
    Song, X. G.
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2018, 27 (12) : 6709 - 6718
  • [27] Effect of Rolling Reduction on Microstructure and Property of Ultrafine Grained Low-Carbon Steel Processed by Cryorolling Martensite
    Yuan, Qing
    Xu, Guang
    Liu, Sheng
    Liu, Man
    Hu, Haijiang
    Li, Guangqiang
    METALS, 2018, 8 (07):
  • [28] The Effect of Initial Microstructure on Microstructure Evolution and Mechanical Properties of Intercritically Rolled Low-Carbon Microalloyed Steel Plates
    Shen, Xin-jun
    Li, De-zhi
    Chen, Jun
    Tang, Shuai
    Wang, Guo-dong
    STEEL RESEARCH INTERNATIONAL, 2019, 90 (11)
  • [29] Microstructure, crystallography, mechanical and damping properties of a low-carbon bainitic steel austempered at various temperatures
    Yao, Chunxia
    Lan, Huifang
    Tao, Zhen
    Qi, Min
    Du, Linxiu
    JOURNAL OF MATERIALS SCIENCE, 2022, 57 (40) : 19068 - 19087
  • [30] Effects of Isothermal Transformation at the Quenching Temperature on the Microstructure and Mechanical Properties of a Medium-Carbon Steel
    Guan, Jisheng
    Liu, Man
    Tian, Junyu
    Chen, Zhenye
    Xu, Guang
    TRANSACTIONS OF THE INDIAN INSTITUTE OF METALS, 2021, 74 (12) : 3265 - 3272