Phase Transitions towards Criticality in a Neural System with Adaptive Interactions

被引:114
作者
Levina, Anna [1 ,2 ]
Herrmann, J. Michael [1 ,2 ,3 ]
Geisel, Theo [1 ,2 ]
机构
[1] Bernstein Ctr Computat Neurosci, D-37073 Gottingen, Germany
[2] Max Planck Inst Dynam & Selforg, D-37073 Gottingen, Germany
[3] Univ Edinburgh, Sch Informat, IPAB, Edinburgh EH8 9AB, Midlothian, Scotland
关键词
SELF-ORGANIZED CRITICALITY; NEOCORTICAL PYRAMIDAL NEURONS; AVALANCHE DYNAMICS; NETWORKS; SYNAPSES; CIRCUITS;
D O I
10.1103/PhysRevLett.102.118110
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We analytically describe a transition scenario to self-organized criticality (SOC) that is new for physics as well as neuroscience; it combines the criticality of first and second-order phase transitions with a SOC phase. We consider a network of pulse-coupled neurons interacting via dynamical synapses, which exhibit depression and facilitation as found in experiments. We analytically show the coexistence of a SOC phase and a subcritical phase connected by a cusp bifurcation. Switching between the two phases can be triggered by varying the intensity of noisy inputs.
引用
收藏
页数:4
相关论文
共 21 条
[1]  
[Anonymous], 2006, ADV NEURAL INFORM PR, P771
[2]   SELF-ORGANIZED CRITICALITY - AN EXPLANATION OF 1/F NOISE [J].
BAK, P ;
TANG, C ;
WIESENFELD, K .
PHYSICAL REVIEW LETTERS, 1987, 59 (04) :381-384
[3]  
Beggs JM, 2003, J NEUROSCI, V23, P11167
[4]   Psychophysics - Are our senses critical? [J].
Chialvo, DR .
NATURE PHYSICS, 2006, 2 (05) :301-302
[5]   Finite-size effects of avalanche dynamics [J].
Eurich, CW ;
Herrmann, JM ;
Ernst, UA .
PHYSICAL REVIEW E, 2002, 66 (06) :15-066137
[6]   SELF-ORGANIZED CRITICALITY IN A STICK-SLIP PROCESS [J].
FEDER, HJS ;
FEDER, J .
PHYSICAL REVIEW LETTERS, 1991, 66 (20) :2669-2672
[7]   Avalanche dynamics in a pile of rice [J].
Frette, V ;
Christensen, K ;
MaltheSorenssen, A ;
Feder, J ;
Jossang, T ;
Meakin, P .
NATURE, 1996, 379 (6560) :49-52
[8]  
Gutenberg B., 1956, Ann. Geofis, V9, P1, DOI DOI 10.4401/AG-5590
[9]   Critical branching captures activity in living neural networks and maximizes the number of metastable states [J].
Haldeman, C ;
Beggs, JM .
PHYSICAL REVIEW LETTERS, 2005, 94 (05)
[10]   Optimal dynamical range of excitable networks at criticality [J].
Kinouchi, Osame ;
Copelli, Mauro .
NATURE PHYSICS, 2006, 2 (05) :348-352