On the S-matrix conjecture

被引:2
|
作者
Drnovsek, Roman [1 ]
机构
[1] Univ Ljubljana, Fac Math & Phys, Dept Math, SI-1000 Ljubljana, Slovenia
关键词
Matrices; Frobenius norm; Inequalities; HADAMARD-TRANSFORM OPTICS; DESIGNS;
D O I
10.1016/j.laa.2013.09.012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Motivated with a problem in spectroscopy, Sloane and Harwit conjectured in 1976 what is the minimal Frobenius norm of the inverse of a matrix having all entries from the interval [0, 1]. In 1987, Cheng proved their conjecture in the case of odd dimensions, while for even dimensions he obtained a slightly weaker lower bound for the norm. His proof is based on the Kiefer-Wolfowitz equivalence theorem from the approximate theory of optimal design. In this note we give a short and simple proof of his result. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:3555 / 3560
页数:6
相关论文
共 50 条
  • [1] Statistics of S-matrix poles for chaotic systems with broken time reversal invariance: A conjecture
    Fyodorov, YV
    Titov, M
    Sommers, HJ
    PHYSICAL REVIEW E, 1998, 58 (02) : R1195 - R1198
  • [2] THE SYMMETRY OF THE S-MATRIX
    COESTER, F
    PHYSICAL REVIEW, 1953, 89 (04): : 913 - 913
  • [3] CONVERGENCE OF THE S-MATRIX
    YENNIE, DR
    GARTENHAUS, S
    NUOVO CIMENTO, 1958, 9 (01): : 59 - 76
  • [4] THE SYMMETRY OF THE S-MATRIX
    COESTER, F
    PHYSICAL REVIEW, 1953, 89 (03): : 619 - 620
  • [5] INVARIANCE AND THE S-MATRIX
    KAMEFUCHI, S
    TAKAHASHI, Y
    NUCLEAR PHYSICS, 1960, 17 (04): : 686 - 694
  • [6] S-MATRIX CHARACTERIZATION
    徐邦清
    邵常贵
    王永久
    Science China Mathematics, 1987, (08) : 819 - 825
  • [7] SUPERGRAVITY AND S-MATRIX
    GRISARU, MT
    PENDLETON, HN
    NIEUWENHUIZEN, PV
    PHYSICAL REVIEW D, 1977, 15 (04): : 996 - 1006
  • [8] CONTINUITY OF S-MATRIX
    NARNHOFER, H
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1975, 30 (02): : 254 - 266
  • [9] ON THE EVALUATION OF THE S-MATRIX
    COESTER, F
    PHYSICAL REVIEW, 1951, 81 (03): : 455 - 456
  • [10] The noncommutative S-Matrix
    Raju, Suvrat
    JOURNAL OF HIGH ENERGY PHYSICS, 2009, (06):