Dijet Resonance Search with Weak Supervision Using √S=13 TeV pp Collisions in the ATLAS Detector

被引:57
作者
Aad, G. [159 ]
Abbott, B. [189 ]
Abbott, D. C. [160 ]
Abud, A. Abed [60 ]
Abeling, K. [81 ]
Abhayasinghe, D. K. [150 ]
Abidi, S. H. [239 ]
AbouZeid, O. S. [64 ]
Abraham, N. L. [226 ]
Abramowicz, H. [232 ]
Abreu, H. [231 ]
Abulaiti, Y. [8 ]
Acharya, B. S. [105 ,106 ,269 ]
Achkar, B. [81 ]
Adam, L. [157 ]
Bourdarios, C. Adam [7 ]
Adamczyk, L. [136 ]
Adamek, L. [239 ]
Adelman, J. [180 ]
Adersberger, M. [171 ]
Adiguzel, A. [16 ]
Adorni, S. [82 ]
Adye, T. [210 ]
Affolder, A. A. [212 ]
Afik, Y. [231 ]
Agapopoulou, C. [103 ]
Agaras, M. N. [62 ]
Aggarwal, A. [177 ]
Agheorghiesei, C. [42 ]
Aguilar-Saavedra, J. A. [200 ,205 ,281 ]
Ahmad, A. [60 ]
Ahmadov, F. [129 ]
Ahmed, W. S. [161 ]
Ai, X. [26 ,27 ]
Aielli, G. [120 ,121 ]
Akatsuka, S. [139 ]
Akesson, T. P. A. [153 ]
Akilli, E. [82 ]
Akimov, A., V [168 ]
Al Khoury, K. [103 ]
Alberghi, G. L. [34 ,35 ,36 ]
Albert, J. [250 ]
Verzini, M. J. Alconada [232 ]
Alderweireldt, S. [60 ]
Aleksa, M. [60 ]
Aleksandrov, I. N. [129 ]
Alexa, C. [41 ]
Alexopoulos, T. [12 ]
Alfonsi, A. [178 ,179 ]
Alfonsi, F. [34 ,35 ,36 ]
机构
[1] Univ Adelaide, Dept Phys, Adelaide, SA, Australia
[2] SUNY Albany, Dept Phys, Albany, NY 12222 USA
[3] Univ Alberta, Dept Phys, Edmonton, AB, Canada
[4] Ankara Univ, Dept Phys, Ankara, Turkey
[5] Istanbul Aydin Univ, Applicat & Res Ctr Adv Studies, Istanbul, Turkey
[6] TOBB Univ Econ & Technol, Div Phys, Ankara, Turkey
[7] Univ Grenoble Alpes, Univ Savoie Mt Blanc, IN2P3, CNRS,LAPP, Annecy, France
[8] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA
[9] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA
[10] Univ Texas Arlington, Dept Phys, POB 19059, Arlington, TX 76019 USA
[11] Natl & Kapodistrian Univ Athens, Phys Dept, Athens, Greece
[12] Natl Tech Univ Athens, Phys Dept, Zografos, Greece
[13] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA
[14] Bahcesehir Univ, Fac Engn & Nat Sci, Istanbul, Turkey
[15] Istanbul Bilgi Univ, Fac Engn & Nat Sci, Istanbul, Turkey
[16] Bogazici Univ, Dept Phys, Istanbul, Turkey
[17] Gaziantep Univ, Dept Phys Engn, Gaziantep, Turkey
[18] Azerbaijan Acad Sci, Inst Phys, Baku, Azerbaijan
[19] Barcelona Inst Sci & Technol, Inst Fis Altes Energies IFAE, Barcelona, Spain
[20] Chinese Acad Sci, Inst High Energy Phys, Beijing, Peoples R China
[21] Tsinghua Univ, Phys Dept, Beijing, Peoples R China
[22] Nanjing Univ, Dept Phys, Nanjing, Peoples R China
[23] Univ Chinese Acad Sci UCAS, Beijing, Peoples R China
[24] Univ Belgrade, Inst Phys, Belgrade, Serbia
[25] Univ Bergen, Dept Phys & Technol, Bergen, Norway
[26] Lawrence Berkeley Natl Lab, Phys Div, Berkeley, CA USA
[27] Univ Calif Berkeley, Berkeley, CA 94720 USA
[28] Humboldt Univ, Inst Phys, Berlin, Germany
[29] Univ Bern, Albert Einstein Ctr Fundamental Phys, Bern, Switzerland
[30] Univ Bern, Lab High Energy Phys, Bern, Switzerland
[31] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England
[32] Univ Antonio Narino, Fac Ciencias, Bogota, Colombia
[33] Univ Antonio Narino, Ctr Invest, Bogota, Colombia
[34] INFN Bologna, Bologna, Italy
[35] Univ Bologna, Dipartimento Fis, Bologna, Italy
[36] Ist Nazl Fis Nucl, Sez Bologna, Bologna, Italy
[37] Univ Bonn, Phys Inst, Bonn, Germany
[38] Boston Univ, Dept Phys, 590 Commonwealth Ave, Boston, MA 02215 USA
[39] Brandeis Univ, Dept Phys, Waltham, MA 02254 USA
[40] Transilvania Univ Brasov, Brasov, Romania
[41] Horia Hulubei Natl Inst Phys & Nucl Engn, Bucharest, Romania
[42] Alexandru Ioan Cuza Univ, Dept Phys, Iasi, Romania
[43] Natl Inst Res & Dev Isotop & Mol Technol, Phys Dept, Cluj Napoca, Romania
[44] West Univ Timisoara, Timisoara, Romania
[45] Comenius Univ, Fac Math Phys & Informat, Bratislava, Slovakia
[46] Slovak Acad Sci, Inst Expt Phys, Dept Subnucl Phys, Kosice, Slovakia
[47] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA
[48] Univ Buenos Aires, Dept Fis, Buenos Aires, DF, Argentina
[49] Calif State Univ Los Angeles, Los Angeles, CA 90032 USA
[50] Univ Cambridge, Cavendish Lab, Cambridge, England
基金
加拿大自然科学与工程研究理事会; 欧盟地平线“2020”; 英国科学技术设施理事会; 巴西圣保罗研究基金会;
关键词
MASS; DISTRIBUTIONS; ASSOCIATION; PHOTON; JET;
D O I
10.1103/PhysRevLett.125.131801
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This Letter describes a search for narrowly resonant new physics using a machine -learning anomaly detection procedure that does not rely on signal simulations for developing the analysis selection. Weakly supervised learning is used to train classifiers directly on data to enhance potential signals. The targeted topology is dijet events and the features used for machine learning are the masses of the two jets. The resulting analysis is essentially a three-dimensional search A -> BC, for m(A) similar to O(TeV), m(B), m(C) similar to O(100 GeV) and B, C are reconstructed as large-radius jets, without paying a penalty associated with a large trials factor in the scan of the masses of the two jets. The full run 2 root s = 13 TeV pp collision dataset of 139 fb(-1) recorded by the ATLAS detector at the Large Hadron Collider is used for the search. There is no significant evidence of a localized excess in the dijet invariant mass spectrum between 1.8 and 8.2 TeV, Cross-section limits for narrow -width A, B, and C particles vary with m(A), m(B), and m(C). For example, when m(A) = 3 TeV and m(B) greater than or similar to 200 GeV, a production cross section between 1 and 5 fb is excluded at 95% confidence level, depending on m(C). For certain masses, these limits are up to 10 times more sensitive than those obtained by the inclusive dijet search. These results are complementary to the dedicated searches for the case that B and C are standard model bosons.
引用
收藏
页数:23
相关论文
共 114 条
[71]   Anomaly Detection for Resonant New Physics with Machine Learning [J].
Collins, Jack ;
Howe, Kiel ;
Nachman, Benjamin .
PHYSICAL REVIEW LETTERS, 2018, 121 (24)
[72]   Extending the search for new resonances with machine learning [J].
Collins, Jack H. ;
Howe, Kiel ;
Nachman, Benjamin .
PHYSICAL REVIEW D, 2019, 99 (01)
[73]   Asymptotic formulae for likelihood-based tests of new physics [J].
Cowan, Glen ;
Cranmer, Kyle ;
Gross, Eilam ;
Vitells, Ofer .
EUROPEAN PHYSICAL JOURNAL C, 2011, 71 (02)
[74]   THE UNEXPLORED LANDSCAPE OF TWO-BODY RESONANCES [J].
Craig, Nathaniel ;
Draper, Patrick ;
Kong, Kyoungchul ;
Ng, Yvonne ;
Whiteson, Daniel .
ACTA PHYSICA POLONICA B, 2019, 50 (05) :837-851
[75]  
D'Agnolo R. T., ARXIV191212155
[76]   Learning new physics from a machine [J].
D'Agnolo, Raffaele Tito ;
Wulzer, Andrea .
PHYSICAL REVIEW D, 2019, 99 (01)
[77]  
D0 Collaboration, 2000, Phys. Rev. D, V62
[78]   Guiding new physics searches with unsupervised learning [J].
De Simone, Andrea ;
Jacques, Thomas .
EUROPEAN PHYSICAL JOURNAL C, 2019, 79 (04)
[79]   Weakly supervised classification in high energy physics [J].
Dery, Lucio Mwinmaarong ;
Nachman, Benjamin ;
Rubbo, Francesco ;
Schwartzman, Ariel .
JOURNAL OF HIGH ENERGY PHYSICS, 2017, 2017 (05)
[80]   Uncovering latent jet substructure [J].
Dillon, Barry M. ;
Faroughy, Darius A. ;
Kamenik, Jernej F. .
PHYSICAL REVIEW D, 2019, 100 (05)