Regularity of abelian linear actions

被引:5
作者
Arnal, Didier [1 ]
Dali, Bechir [1 ]
Currey, Bradley [1 ]
Oussa, Vignon [1 ]
机构
[1] Univ Bourgogne, Inst Math Bourgogne, UMR CNRS 5584, Dijon, France
来源
COMMUTATIVE AND NONCOMMUTATIVE HARMONIC ANALYSIS AND APPLICATIONS | 2013年 / 603卷
关键词
Regular orbit; Lie algebra root; linear Lie group action;
D O I
10.1090/conm/603/12040
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the regularity of orbits for the natural action of a Lie subgroup G of GL(V), where V is a finite dimensional real vector space. When G is connected, abelian, and satisfies a certain rationality condition, we show that there are two possibilities: either there is a G-invariant Zariski open set Omega in which every orbit is regular, or there is a G-invariant conull S-delta set in which every orbit is not regular. Moreover, under the rationality condition, an explicit characterization of almost everywhere regularity is proved.
引用
收藏
页码:89 / 109
页数:21
相关论文
共 10 条
[1]  
[Anonymous], LECT NOTES MATH
[2]  
[Anonymous], 2002, The Journal of Geometric Analysis
[3]   Canonical coordinates for a class of solvable groups [J].
Arnal, Didier ;
Currey, Bradley ;
Dali, Bechir .
MONATSHEFTE FUR MATHEMATIK, 2012, 166 (01) :19-55
[4]  
Bernat P., 1972, MONOGRAPHIES SOC MAT, V4
[5]  
BRUNA J., 2011, ARXIV11040838V2
[6]   TRANSFORMATION GROUPS AND C-ALGEBRAS [J].
EFFROS, EG .
ANNALS OF MATHEMATICS, 1965, 81 (01) :38-&
[7]   GENERALIZED CALDERON CONDITIONS AND REGULAR ORBIT SPACES [J].
Fuehr, Hartmut .
COLLOQUIUM MATHEMATICUM, 2010, 120 (01) :103-126
[8]  
Glimm J., 1961, Trans. Amer. Math. Soc., V101, P124, DOI DOI 10.2307/1993415
[9]   FACTORING POLYNOMIALS WITH RATIONAL COEFFICIENTS [J].
LENSTRA, AK ;
LENSTRA, HW ;
LOVASZ, L .
MATHEMATISCHE ANNALEN, 1982, 261 (04) :515-534
[10]  
Varadarajan V. S., 1984, GRADUATE TEXTS MATH, V102, DOI 10.1007/978-1-4612-1126-6