Tight-binding calculations of image-charge effects in colloidal nanoscale platelets of CdSe

被引:149
|
作者
Benchamekh, R. [1 ]
Gippius, N. A. [2 ,3 ]
Even, J. [4 ,5 ]
Nestoklon, M. O. [1 ,6 ]
Jancu, J. -M. [4 ,5 ]
Ithurria, S. [7 ,8 ]
Dubertret, B. [7 ,8 ]
Efros, Al. L. [9 ]
Voisin, P. [1 ]
机构
[1] CNRS, Lab Photon & Nanostruct, F-91460 Marcoussis, France
[2] RAS, AM Prokhorov Gen Phys Inst, Moscow, Russia
[3] Univ Clermont Ferrand, Photochim Mol & Macromol Lab, CNRS, Inst Pascal,PHOTON N2, F-63177 Clermont Ferrand, France
[4] Univ Europeenne Bretagne, FOTON, INSA, F-35708 Rennes, France
[5] CNRS, F-35708 Rennes, France
[6] Russian Acad Sci, AF Ioffe Phys Tech Inst, St Petersburg 194021, Russia
[7] CNRS, Lab Phys & Etud Mat, F-75005 Paris, France
[8] ESPCI, F-75005 Paris, France
[9] Naval Res Lab, Washington, DC 20375 USA
来源
PHYSICAL REVIEW B | 2014年 / 89卷 / 03期
关键词
QUANTUM-WELLS; OPTICAL-PROPERTIES; SEMICONDUCTOR NANOPLATELETS; COULOMB INTERACTION; ZINCBLENDE CDSE; NANOCRYSTALS; SPECTROSCOPY; EXCITONS; FILMS; GAAS;
D O I
10.1103/PhysRevB.89.035307
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
CdSe nanoplatelets show perfectly quantized thicknesses of a few monolayers. They present a situation of extreme, yet well defined quantum confinement. Due to a large dielectric contrast between the semiconductor and its ligand environment, interaction between carriers and their dielectric images strongly renormalize bare single particle states. We discuss the electronic properties of this original system in an advanced tight-binding model, and show that Coulomb interactions, including self-energy corrections and enhanced electron-hole interaction, lead to exciton binding energies up to several hundred meV.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Tight-binding and evolutionary search approach for nanoscale CoRh alloys
    Díaz-Ortiz, A
    Aguilera-Granja, F
    Michaelian, K
    Berlanga-Ramírez, EO
    Montejano-Carrizales, JM
    Vega, A
    PHYSICA B-CONDENSED MATTER, 2005, 370 (1-4) : 200 - 214
  • [32] Tight-binding theory of the excitonic states in colloidal InSb nanostructures
    Sukkabot, W. (w.sukkabot@gmail.com), 1600, Elsevier Ltd (27):
  • [33] Image-charge effects on an electrostatic pendulum in mechanical equilibrium
    Goodman, D. S.
    Fischetti, R. D.
    Hodges, A.
    Tekalp, H. A.
    AMERICAN JOURNAL OF PHYSICS, 2020, 88 (03) : 222 - 228
  • [34] Tight-binding theory of the excitonic states in colloidal InSb nanostructures
    Sukkabot, Worasak
    Materials Science in Semiconductor Processing, 2014, 27 : 51 - 55
  • [35] Tight-binding theory of the excitonic states in colloidal InSb nanostructures
    Sukkabot, Worasak
    MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2014, 27 : 51 - 55
  • [36] Tight-binding modeling of charge migration in DNA devices
    Cuniberti, G.
    Macia, E.
    Rodriguez, A.
    Romer, R. A.
    CHARGE MIGRATION IN DNA: PERSPECTIVES FROM PHYSICS, CHEMISTRY, AND BIOLOGY, 2007, : 1 - +
  • [37] ORBITAL NONORTHOGONALITY EFFECTS IN BAND-STRUCTURE CALCULATIONS WITHIN THE TIGHT-BINDING SCHEME
    MIRABELLA, DA
    ALDAO, CM
    DEZA, RR
    AMERICAN JOURNAL OF PHYSICS, 1994, 62 (02) : 162 - 166
  • [38] Tight-binding calculations of the {211}Sigma=3 boundary in diamond
    Kohyama, M
    Ichinose, H
    Zhang, Y
    Ishida, Y
    Nakanose, M
    INTERFACE SCIENCE, 1997, 4 (3-4) : 157 - 167
  • [39] Transport properties in anisotropic cross junctions by tight-binding calculations
    Takagaki, Y.
    Ploog, K. H.
    PHYSICAL REVIEW B, 2006, 74 (07):
  • [40] A tight-binding model for calculations of structures and properties of graphitic nanotubes
    Molina, JM
    Savinsky, SS
    Khokhriakov, NV
    JOURNAL OF CHEMICAL PHYSICS, 1996, 104 (12): : 4652 - 4656