Tight-binding calculations of image-charge effects in colloidal nanoscale platelets of CdSe

被引:149
|
作者
Benchamekh, R. [1 ]
Gippius, N. A. [2 ,3 ]
Even, J. [4 ,5 ]
Nestoklon, M. O. [1 ,6 ]
Jancu, J. -M. [4 ,5 ]
Ithurria, S. [7 ,8 ]
Dubertret, B. [7 ,8 ]
Efros, Al. L. [9 ]
Voisin, P. [1 ]
机构
[1] CNRS, Lab Photon & Nanostruct, F-91460 Marcoussis, France
[2] RAS, AM Prokhorov Gen Phys Inst, Moscow, Russia
[3] Univ Clermont Ferrand, Photochim Mol & Macromol Lab, CNRS, Inst Pascal,PHOTON N2, F-63177 Clermont Ferrand, France
[4] Univ Europeenne Bretagne, FOTON, INSA, F-35708 Rennes, France
[5] CNRS, F-35708 Rennes, France
[6] Russian Acad Sci, AF Ioffe Phys Tech Inst, St Petersburg 194021, Russia
[7] CNRS, Lab Phys & Etud Mat, F-75005 Paris, France
[8] ESPCI, F-75005 Paris, France
[9] Naval Res Lab, Washington, DC 20375 USA
来源
PHYSICAL REVIEW B | 2014年 / 89卷 / 03期
关键词
QUANTUM-WELLS; OPTICAL-PROPERTIES; SEMICONDUCTOR NANOPLATELETS; COULOMB INTERACTION; ZINCBLENDE CDSE; NANOCRYSTALS; SPECTROSCOPY; EXCITONS; FILMS; GAAS;
D O I
10.1103/PhysRevB.89.035307
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
CdSe nanoplatelets show perfectly quantized thicknesses of a few monolayers. They present a situation of extreme, yet well defined quantum confinement. Due to a large dielectric contrast between the semiconductor and its ligand environment, interaction between carriers and their dielectric images strongly renormalize bare single particle states. We discuss the electronic properties of this original system in an advanced tight-binding model, and show that Coulomb interactions, including self-energy corrections and enhanced electron-hole interaction, lead to exciton binding energies up to several hundred meV.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Tight-binding calculations of cohesive properties and phase diagram of
    Shinoda, T
    Mishima, Y
    MasudaJindo, K
    Sluiter, MHF
    JOURNAL OF PHASE EQUILIBRIA, 1997, 18 (06): : 624 - 627
  • [22] Electronic structure and optical properties of colloidal InAs/InP core/shell nanocrystals: Tight-binding calculations
    Sukkabot, Worasak
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2014, 63 : 235 - 240
  • [23] Tight-binding calculations of Ge-nanowire bandstructures
    Bescond, Marc
    Cavassilas, Nicolas
    Nehari, Karim
    Lannoo, Michel
    JOURNAL OF COMPUTATIONAL ELECTRONICS, 2007, 6 (1-3) : 341 - 344
  • [24] TIGHT-BINDING CALCULATIONS OF SURFACE STATES OF SI(111)
    PANDEY, KC
    PHILLIPS, JC
    SOLID STATE COMMUNICATIONS, 1974, 14 (06) : 439 - 441
  • [25] LDA and tight-binding: Total energy calculations of polyparaphenylene
    Miao, MS
    Van Doren, VE
    Van Camp, PE
    Straub, G
    COMPUTATIONAL MATERIALS SCIENCE, 1998, 10 (1-4) : 362 - 367
  • [26] Strained graphene: tight-binding and density functional calculations
    Ribeiro, R. M.
    Pereira, Vitor M.
    Peres, N. M. R.
    Briddon, P. R.
    Castro Neto, A. H.
    NEW JOURNAL OF PHYSICS, 2009, 11
  • [27] Tight-binding Hamiltonians for realistic electronic structure calculations
    Papaconstantopoulos, DA
    Lach-Hab, M
    Mehl, MJ
    PHYSICA B-CONDENSED MATTER, 2001, 296 (1-3) : 129 - 137
  • [28] BAND THEORY, VALENCE BOND, AND TIGHT-BINDING CALCULATIONS
    LOWDIN, PO
    JOURNAL OF APPLIED PHYSICS, 1962, 33 (01) : 251 - +
  • [29] Tight-binding calculations of Ge-nanowire bandstructures
    Marc Bescond
    Nicolas Cavassilas
    Karim Nehari
    Michel Lannoo
    Journal of Computational Electronics, 2007, 6 : 341 - 344
  • [30] Microwave emulations and tight-binding calculations of transport in polyacetylene
    Stegmann, Thomas
    Franco-Villafane, John A.
    Ortiz, Yenni P.
    Kuhl, Ulrich
    Mortessagne, Fabrice
    Seligman, Thomas H.
    PHYSICS LETTERS A, 2017, 381 (01) : 24 - 29