Tight-binding calculations of image-charge effects in colloidal nanoscale platelets of CdSe

被引:149
|
作者
Benchamekh, R. [1 ]
Gippius, N. A. [2 ,3 ]
Even, J. [4 ,5 ]
Nestoklon, M. O. [1 ,6 ]
Jancu, J. -M. [4 ,5 ]
Ithurria, S. [7 ,8 ]
Dubertret, B. [7 ,8 ]
Efros, Al. L. [9 ]
Voisin, P. [1 ]
机构
[1] CNRS, Lab Photon & Nanostruct, F-91460 Marcoussis, France
[2] RAS, AM Prokhorov Gen Phys Inst, Moscow, Russia
[3] Univ Clermont Ferrand, Photochim Mol & Macromol Lab, CNRS, Inst Pascal,PHOTON N2, F-63177 Clermont Ferrand, France
[4] Univ Europeenne Bretagne, FOTON, INSA, F-35708 Rennes, France
[5] CNRS, F-35708 Rennes, France
[6] Russian Acad Sci, AF Ioffe Phys Tech Inst, St Petersburg 194021, Russia
[7] CNRS, Lab Phys & Etud Mat, F-75005 Paris, France
[8] ESPCI, F-75005 Paris, France
[9] Naval Res Lab, Washington, DC 20375 USA
来源
PHYSICAL REVIEW B | 2014年 / 89卷 / 03期
关键词
QUANTUM-WELLS; OPTICAL-PROPERTIES; SEMICONDUCTOR NANOPLATELETS; COULOMB INTERACTION; ZINCBLENDE CDSE; NANOCRYSTALS; SPECTROSCOPY; EXCITONS; FILMS; GAAS;
D O I
10.1103/PhysRevB.89.035307
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
CdSe nanoplatelets show perfectly quantized thicknesses of a few monolayers. They present a situation of extreme, yet well defined quantum confinement. Due to a large dielectric contrast between the semiconductor and its ligand environment, interaction between carriers and their dielectric images strongly renormalize bare single particle states. We discuss the electronic properties of this original system in an advanced tight-binding model, and show that Coulomb interactions, including self-energy corrections and enhanced electron-hole interaction, lead to exciton binding energies up to several hundred meV.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] CHARGE SELF-CONSISTENT TIGHT-BINDING CALCULATIONS
    HANKE, M
    STREHLOW, R
    KUHN, W
    ACTA PHYSICA POLONICA A, 1986, 69 (06) : 971 - 974
  • [2] TIGHT-BINDING CALCULATIONS FOR NICKEL
    NORWOOD, TE
    TYLER, JM
    FRY, JL
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1969, 14 (03): : 359 - &
  • [3] TIGHT-BINDING APPROACH TO DEFECT CALCULATIONS
    ESTERLING, DM
    BOSWARVA, IM
    JOURNAL OF METALS, 1982, 35 (12): : A66 - A66
  • [4] Tight-binding Calculations of Ellipsoidal In As Nanocrystals
    Sukkabot, Worasak
    CHIANG MAI JOURNAL OF SCIENCE, 2014, 41 (5.2): : 1375 - 1383
  • [5] Nanoscale capacitance: A quantum tight-binding model
    Zhai, Feng
    Wu, Jian
    Li, Yang
    Lu, Jun-Qiang
    PHYSICS LETTERS A, 2017, 381 (01) : 44 - 47
  • [6] Tight-binding g-factor calculations of CdSe nanostructures -: art. no. 235301
    Schrier, J
    Whaley, KB
    PHYSICAL REVIEW B, 2003, 67 (23):
  • [7] Atomistic Tight-binding Theory of CdSe Wurtzite Nanocrystals
    Sukerm, Akkaratch
    Sukkabot, Worasak
    CHIANG MAI JOURNAL OF SCIENCE, 2015, 42 (04): : 990 - 995
  • [8] Atomistic tight-binding theory in 2D colloidal CdSe zinc-blende nanoplatelets
    Sukkabot, Worasak
    JOURNAL OF COMPUTATIONAL ELECTRONICS, 2017, 16 (03) : 796 - 804
  • [9] Atomistic tight-binding theory in 2D colloidal CdSe zinc-blende nanoplatelets
    Worasak Sukkabot
    Journal of Computational Electronics, 2017, 16 : 796 - 804
  • [10] TIGHT-BINDING CALCULATIONS FOR D-BANDS
    TYLER, JM
    NORWOOD, TE
    FRY, JL
    PHYSICAL REVIEW B, 1970, 1 (01): : 297 - &