On the isomorphic mapping of weighted spaces by an elliptic operator with degeneration on the domain boundary

被引:7
作者
Rukavishnikov, V. A. [1 ]
Rukavishnikova, E. I. [1 ]
机构
[1] Russian Acad Sci, Far Eastern Branch, Ctr Comp, Khabarovsk, Russia
基金
俄罗斯科学基金会;
关键词
FINITE-ELEMENT-METHOD; STRONG SINGULARITY; MAXWELL EQUATIONS; CONVERGENCE; FEM;
D O I
10.1134/S0012266114030082
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the first boundary value problem for a second-order elliptic equation with degeneration on the entire twice continuously differentiable boundary of a two-dimensional domain Omega; this problem has a generalized solution in the weighted space W-2,alpha-1(2)(Omega). We find conditions ensuring that the generalized solution belongs to the narrower space W-2,alpha+lambda-1(2)(Omega) (-1/2 < alpha < alpha + lambda < 1/2), which permits obtaining estimates for the convergence rate of an approximate finite-element solution to the exact solution in the norms of the spaces W-2,alpha(1)(Omega) and L-2(Omega).
引用
收藏
页码:345 / 351
页数:7
相关论文
共 19 条
[1]   Numerical solution to the time-dependent Maxwell equations in two-dimensional singular domains:: The Singular Complement Method [J].
Assous, F ;
Ciarlet, P ;
Segré, J .
JOURNAL OF COMPUTATIONAL PHYSICS, 2000, 161 (01) :218-249
[2]  
Aubin J.-P, 1972, PRIBLIZHENNOE RESHEN
[3]   Exponential convergence of hp-FEM for Maxwell equations with weighted regularization in polygonal domains [J].
Costabel, M ;
Dauge, M ;
Schwab, C .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2005, 15 (04) :575-622
[4]  
Kantorovich L.V., 1977, Funktsional'nyi analiz (Functional Analysis)
[5]   Analysis of a modified Schrodinger operator in 2D: Regularity, index, and FEM [J].
Li, Hengguang ;
Nistor, Victor .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 224 (01) :320-338
[6]  
LIZORKIN PI, 1981, DOKL AKAD NAUK SSSR+, V259, P28
[7]  
LIZORKIN PI, 1981, DOKL AKAD NAUK SSSR+, V257, P278
[8]  
Nikol'skii S.M., 1979, T MIAN, V150, P212
[9]  
Nikolskii S.M., 1977, Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya (Approximation ofFunctions of Several Variables and Embedding Theorems)
[10]   Weighted finite element method for an elasticity problem with singularity [J].
Rukavishnikov, V. A. ;
Nikolaev, S. G. .
DOKLADY MATHEMATICS, 2013, 88 (03) :705-709