Dendrite-Free Lithium Anodes with Ultra-Deep Stripping and Plating Properties Based on Vertically Oriented Lithium-Copper-Lithium Arrays

被引:130
作者
Cao, Zhenjiang [1 ]
Li, Bin [1 ]
Yang, Shubin [1 ]
机构
[1] Beihang Univ, Sch Mat Sci & Engn, Beijing 100191, Peoples R China
基金
国家重点研发计划;
关键词
deep charging and discharging; dendrites; high rates; lithium anodes; vertical orientation; METAL ANODE; HIGH-ENERGY; BATTERIES; ELECTRODE; LIQUID;
D O I
10.1002/adma.201901310
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Although lithium metal is the best anode for lithium-based batteries, the uncontrollable lithium dendrites especially under deep stripping and plating states hamper its practical applications. Here, a dendrite-free lithium anode is developed based on vertically oriented lithium-copper-lithium arrays, which can be facilely produced via traditional rolling or repeated stacking approaches. Such vertically oriented arrays not only enable both the lithium-ion flux and the electric field to be regulated, but also can act as a "dam" to guide the regular plating of lithium, thus efficiently buffering the volume change of the lithium anode upon cycling. As a consequence, the vertically oriented anode exhibits an excellent deep stripping and plating capability upto 50 mAh cm(-2), high rate capabilities (20 mA cm(-2)), and long cycle life (2000 h). Based on this anode, a full lithium battery with a LiCoO2 cathode delivers a good cycle life, holding great potential for practical lithium-metal batteries with high energy densities.
引用
收藏
页数:6
相关论文
共 31 条
[1]   Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries [J].
Albertus, Paul ;
Babinec, Susan ;
Litzelman, Scott ;
Newman, Aron .
NATURE ENERGY, 2018, 3 (01) :16-21
[2]   A Scalable Approach to Dendrite-Free Lithium Anodes via Spontaneous Reduction of Spray-Coated Graphene Oxide Layers [J].
Bai, Maohui ;
Xie, Keyu ;
Yuan, Kai ;
Zhang, Kun ;
Li, Nan ;
Shen, Chao ;
Lai, Yanqing ;
Vajtai, Robert ;
Ajayan, Pulickel ;
Wei, Bingqing .
ADVANCED MATERIALS, 2018, 30 (29)
[3]   2D MoS2 as an efficient protective layer for lithium metal anodes in high-performance Li-S batteries [J].
Cha, Eunho ;
Patel, Mumukshu D. ;
Park, Juhong ;
Hwang, Jeongwoon ;
Prasad, Vish ;
Cho, Kyeongjae ;
Choi, Wonbong .
NATURE NANOTECHNOLOGY, 2018, 13 (04) :337-+
[4]   Computer simulations of isolated conductors in electrostatic equilibrium [J].
Chang, Herng-Hua .
PHYSICAL REVIEW E, 2008, 78 (05)
[5]   High-Voltage Lithium-Metal Batteries Enabled by Localized High-Concentration Electrolytes [J].
Chen, Shuru ;
Zheng, Jianming ;
Mei, Donghai ;
Han, Kee Sung ;
Engelhard, Mark H. ;
Zhao, Wengao ;
Xu, Wu ;
Liu, Jun ;
Zhang, Ji-Guang .
ADVANCED MATERIALS, 2018, 30 (21)
[6]   Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review [J].
Cheng, Xin-Bing ;
Zhang, Rui ;
Zhao, Chen-Zi ;
Zhang, Qiang .
CHEMICAL REVIEWS, 2017, 117 (15) :10403-10473
[7]   Prestoring Lithium into Stable 3D Nickel Foam Host as Dendrite-Free Lithium Metal Anode [J].
Chi, Shang-Sen ;
Liu, Yongchang ;
Song, Wei-Li ;
Fan, Li-Zhen ;
Zhang, Qiang .
ADVANCED FUNCTIONAL MATERIALS, 2017, 27 (24)
[8]   In Situ Plating of Porous Mg Network Layer to Reinforce Anode Dendrite Suppression in Li-Metal Batteries [J].
Chu, Fulu ;
Hu, Jiulin ;
Tian, Jing ;
Zhou, Xuejun ;
Li, Zheng ;
Li, Chilin .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (15) :12678-12689
[9]   Uniform Nucleation of Lithium in 3D Current Collectors via Bromide Intermediates for Stable Cycling Lithium Metal Batteries [J].
Duan, Hui ;
Zhang, Jing ;
Chen, Xiang ;
Zhang, Xu-Dong ;
Li, Jin-Yi ;
Huang, Lin-Bo ;
Zhang, Xing ;
Shi, Ji-Lei ;
Yin, Ya-Xia ;
Zhang, Qiang ;
Guo, Yu-Guo ;
Jiang, Lang ;
Wan, Li-Jun .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2018, 140 (51) :18051-18057
[10]   Lithiophilic 3D Nanoporous Nitrogen-Doped Graphene for Dendrite-Free and Ultrahigh-Rate Lithium-Metal Anodes [J].
Huang, Gang ;
Han, Jiuhui ;
Zhang, Fan ;
Wang, Ziqian ;
Kashani, Harrizeh ;
Watanabe, Kentaro ;
Chen, Mingwei .
ADVANCED MATERIALS, 2019, 31 (02)