AC magnetometry with active stabilization and harmonic suppression for magnetic nanoparticle spectroscopy and thermometry

被引:10
作者
Bui, Thinh Q. [1 ]
Tew, Weston L. [1 ]
Woods, Solomon, I [1 ]
机构
[1] NIST, Gaithersburg, MD 20899 USA
关键词
PARTICLE SPECTROSCOPY;
D O I
10.1063/5.0031451
中图分类号
O59 [应用物理学];
学科分类号
摘要
Magnetic nanoparticle (MNP) thermometry based on magnetic particle spectroscopy is explored as a potential approach for realizing in situ temperature measurement of 3D objects. MNP thermometry relies on the nonlinear magnetization response to an AC drive field. This nonlinear response has functional dependence on frequency and temperature, governed by the complex magnetization dynamics of MNPs suspended in solution. In this work, we introduce our approach for accurate and precise AC magnetization measurements using actively stabilized drive fields ranging from direct current to 10kHz. To isolate the harmonic response of MNPs from the drive field, we also perform active cancelation to reach drive field suppression up to 120dB. Active stabilization and cancelation are utilized for real-time, sensitive measurements of AC magnetization of commercial samples, with stability on the timescale of hours. Initial results for MNP thermometry are demonstrated using this technique, and we achieved a total temperature uncertainty of 410mK and 170mK at 100ms and 10s integration time, respectively.
引用
收藏
页数:9
相关论文
共 34 条
[1]  
[Anonymous], 2015, ARCH BRONCONEUMOL S1, V51, pS1
[2]   Magnetization response spectroscopy of superparamagnetic nanoparticles for magnetic particle imaging [J].
Biederer, S. ;
Knopp, T. ;
Sattel, T. F. ;
Luedtke-Buzug, K. ;
Gleich, B. ;
Weizenecker, J. ;
Borgert, J. ;
Buzug, T. M. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2009, 42 (20)
[3]   Magnetic-field dependence of Brownian and Neel relaxation times [J].
Dieckhoff, Jan ;
Eberbeck, Dietmar ;
Schilling, Meinhard ;
Ludwig, Frank .
JOURNAL OF APPLIED PHYSICS, 2016, 119 (04)
[4]   Determination of dominating relaxation mechanisms from temperature-dependent Magnetic Particle Spectroscopy measurements [J].
Draack, S. ;
Viereck, T. ;
Nording, F. ;
Janssen, K. -J. ;
Schilling, M. ;
Ludwig, F. .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2019, 474 :570-573
[5]  
Draack S., 2017, INT J MAGN PART IMAG, V3
[6]   Benchtop magnetic particle relaxometer for detection, characterization and analysis of magnetic nanoparticles [J].
Garraud, Nicolas ;
Dhavalikar, Rohan ;
Unni, Mythreyi ;
Savliwala, Shehaab ;
Rinaldi, Carlos ;
Arnold, David P. .
PHYSICS IN MEDICINE AND BIOLOGY, 2018, 63 (17)
[7]   Design and validation of magnetic particle spectrometer for characterization of magnetic nanoparticle relaxation dynamics [J].
Garraud, Nicolas ;
Dhavalikar, Rohan ;
Maldonado-Camargo, Lorena ;
Arnold, David P. ;
Rinaldi, Carlos .
AIP ADVANCES, 2017, 7 (05)
[8]   X-Space MPI: Magnetic Nanoparticles for Safe Medical Imaging [J].
Goodwill, Patrick William ;
Saritas, Emine Ulku ;
Croft, Laura Rose ;
Kim, Tyson N. ;
Krishnan, Kannan M. ;
Schaffer, David V. ;
Conolly, Steven M. .
ADVANCED MATERIALS, 2012, 24 (28) :3870-3877
[9]   Two dimensional magnetic particle spectrometry [J].
Graeser, M. ;
von Gladiss, A. ;
Weber, M. ;
Buzug, T. M. .
PHYSICS IN MEDICINE AND BIOLOGY, 2017, 62 (09) :1-14
[10]   Towards Picogram Detection of Superparamagnetic Iron-Oxide Particles Using a Gradiometric Receive Coil [J].
Graeser, Matthias ;
Knopp, Tobias ;
Szwargulski, Patryk ;
Friedrich, Thomas ;
von Gladiss, Anselm ;
Kaul, Michael ;
Krishnan, Kannan M. ;
Ittrich, Harald ;
Adam, Gerhard ;
Buzug, Thorsten M. .
SCIENTIFIC REPORTS, 2017, 7