Application of ordered nanoparticle self-assemblies in surface-enhanced spectroscopy

被引:46
作者
Chen, Jiaming [1 ]
Guo, Longhua [1 ]
Qiu, Bin [1 ]
Lin, Zhenyu [1 ]
Wang, Tie [2 ]
机构
[1] Fuzhou Univ, Coll Chem, Fujian Prov Key Lab Anal & Detect Technol Food Sa, MOE,Key Lab Analyt Sci Food Safety & Biol,Inst Na, Fuzhou 350116, Fujian, Peoples R China
[2] Chinese Acad Sci, Inst Chem, Key Lab Analyt Chem Living Biosyst, Beijing Natl Lab Mol Sci, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
GOLD NANOROD ARRAYS; REPRODUCIBLE SERS SUBSTRATE; RESONANCE ENERGY-TRANSFER; SILVER ISLAND FILMS; RAMAN-SCATTERING; OPTICAL-PROPERTIES; PLASMONIC NANOSTRUCTURES; INFRARED-ABSORPTION; SINGLE-MOLECULE; ULTRASENSITIVE DETECTION;
D O I
10.1039/c7qm00557a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Surface-enhanced spectroscopy (SES), including surface-enhanced Raman spectroscopy (SERS), surface-enhanced infrared absorption (SEIRA), surface-enhanced fluorescence (SEF), surface-enhanced hyper-Raman spectroscopy (SEHRS), surface-enhanced second harmonic generation (SESHG), and surface-enhanced electrochemiluminescence (SEECL), is an emerging subject that has received significant attention from the research community over the past 40 years. The confined and strong enhanced electromagnetic fields generated from the surface of noble metal nanostructures are considered as the main cause of SES. More importantly, it has been proven that SES is strongly related to the orientation and inter-nanoparticle coupling of different nanostructures. This review article mainly focuses on the application of ordered nanoparticle self-assemblies in SES. Different strategies for the fabrication of ordered nanoparticle self-assemblies, the mechanisms of SES, and the application of SES have been reviewed in detail.
引用
收藏
页码:835 / 860
页数:26
相关论文
共 246 条
[1]   Surface-enhanced Raman scattering biomedical applications of plasmonic colloidal particles [J].
Abalde-Cela, Sara ;
Aldeanueva-Potel, Paula ;
Mateo-Mateo, Cintia ;
Rodriguez-Lorenzo, Laura ;
Alvarez-Puebla, Ramon A. ;
Liz-Marzan, Luis M. .
JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2010, 7 :S435-S450
[2]   Distance-Dependent Metal-Enhanced Intrinsic Fluorescence of Proteins Using Polyelectrolyte Layer-by-Layer Assembly and Aluminum Nanoparticles [J].
Akbay, Nuriye ;
Lakowicz, Joseph R. ;
Ray, Krishanu .
JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (19) :10766-10773
[3]  
Akcora P, 2009, NAT MATER, V8, P354, DOI [10.1038/NMAT2404, 10.1038/nmat2404]
[4]   Contactless Determination of Electrical Conductivity of One-Dimensional Nanomaterials by Solution-Based Electro-orientation Spectroscopy [J].
Akin, Cevat ;
Yi, Jingang ;
Feldman, Leonard C. ;
Durand, Corentin ;
Hus, Saban M. ;
Li, An-Ping ;
Filler, Michael A. ;
Shan, Jerry W. .
ACS NANO, 2015, 9 (05) :5405-5412
[5]   A high-throughput method for controlled hot-spot fabrication in SERS-active gold nanoparticle dimer arrays [J].
Alexander, Kristen D. ;
Hampton, Meredith J. ;
Zhang, Shunping ;
Dhawan, Anuj ;
Xu, Hongxing ;
Lopez, Rene .
JOURNAL OF RAMAN SPECTROSCOPY, 2009, 40 (12) :2171-2175
[6]   Organization of 'nanocrystal molecules' using DNA [J].
Alivisatos, AP ;
Johnsson, KP ;
Peng, XG ;
Wilson, TE ;
Loweth, CJ ;
Bruchez, MP ;
Schultz, PG .
NATURE, 1996, 382 (6592) :609-611
[7]   Optical absorption spectra of nanocrystal gold molecules [J].
Alvarez, MM ;
Khoury, JT ;
Schaaff, TG ;
Shafigullin, MN ;
Vezmar, I ;
Whetten, RL .
JOURNAL OF PHYSICAL CHEMISTRY B, 1997, 101 (19) :3706-3712
[8]   Enhancement and quenching of single-molecule fluorescence [J].
Anger, P ;
Bharadwaj, P ;
Novotny, L .
PHYSICAL REVIEW LETTERS, 2006, 96 (11)
[9]   Biosensing with plasmonic nanosensors [J].
Anker, Jeffrey N. ;
Hall, W. Paige ;
Lyandres, Olga ;
Shah, Nilam C. ;
Zhao, Jing ;
Van Duyne, Richard P. .
NATURE MATERIALS, 2008, 7 (06) :442-453
[10]  
[Anonymous], 2008, ANGEW CHEM