Crystal structure of the CRISPR RNA-guided surveillance complex from Escherichia coli

被引:197
|
作者
Jackson, Ryan N. [1 ]
Golden, Sarah M. [1 ]
van Erp, Paul B. G. [1 ]
Carter, Joshua [1 ]
Westra, Edze R. [2 ]
Brouns, Stan J. J. [2 ]
van der Oost, John [2 ]
Terwilliger, Thomas C. [3 ]
Read, Randy J. [4 ]
Wiedenheft, Blake [1 ]
机构
[1] Montana State Univ, Dept Microbiol & Immunol, Bozeman, MT 59717 USA
[2] Wageningen Univ, Dept Agrotechnol & Food Sci, Lab Microbiol, NL-6703 HB Wageningen, Netherlands
[3] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87545 USA
[4] Univ Cambridge, Cambridge Inst Med Res, Dept Haematol, Cambridge CB2 0XY, England
基金
英国惠康基金;
关键词
BACTERIAL IMMUNE-SYSTEM; PROCESSES PRE-CRRNA; THERMUS-THERMOPHILUS; CAS SYSTEMS; INTERFERENCE COMPLEX; TARGET RECOGNITION; ANTIVIRAL DEFENSE; SEED SEQUENCE; DNA; CASCADE;
D O I
10.1126/science.1256328
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Clustered regularly interspaced short palindromic repeats (CRISPRs) are essential components of RNA-guided adaptive immune systems that protect bacteria and archaea from viruses and plasmids. In Escherichia coli, short CRISPR-derived RNAs (crRNAs) assemble into a 405-kilodalton multisubunit surveillance complex called Cascade (CRISPR-associated complex for antiviral defense). Here we present the 3.24 angstrom resolution x-ray crystal structure of Cascade. Eleven proteins and a 61-nucleotide crRNA assemble into a seahorse-shaped architecture that binds double-stranded DNA targets complementary to the crRNA-guide sequence. Conserved sequences on the 3' and 5' ends of the crRNA are anchored by proteins at opposite ends of the complex, whereas the guide sequence is displayed along a helical assembly of six interwoven subunits that present five-nucleotide segments of the crRNA in pseudo-A-form configuration. The structure of Cascade suggests a mechanism for assembly and provides insights into the mechanisms of target recognition.
引用
收藏
页码:1473 / 1479
页数:7
相关论文
共 50 条
  • [21] Craspase is a CRISPR RNA-guided, RNA-activated protease
    Hu, Chunyi
    van Beljouw, Sam P. B.
    Nam, Ki Hyun
    Schuler, Gabriel
    Ding, Fran
    Cui, Yanru
    Rodriguez-Molina, Alicia
    Haagsma, Anna C.
    Valk, Menno
    Pabst, Martin
    Brouns, Stan J. J.
    Ke, Ailong
    SCIENCE, 2022, 377 (6612) : 1278 - +
  • [22] A novel RNA-guided RNA-targeting CRISPR tool
    Dandan Zhang
    Zhenxiang Li
    Bingyu Yan
    Jian-Feng Li
    Science China(Life Sciences) , 2016, (08) : 854 - 856
  • [23] A novel RNA-guided RNA-targeting CRISPR tool
    Dandan Zhang
    Zhenxiang Li
    Bingyu Yan
    Jian-Feng Li
    Science China(Life Sciences), 2016, 59 (08) : 854 - 856
  • [24] Novel molecular requirements for CRISPR RNA-guided transposition
    Walker, Matt W. G.
    Klompe, Sanne E.
    Zhang, Dennis J.
    Sternberg, Samuel H.
    NUCLEIC ACIDS RESEARCH, 2023, 51 (09) : 4519 - 4535
  • [25] DNA Targeting by a Minimal CRISPR RNA-Guided Cascade
    Hochstrasser, Megan L.
    Taylor, David W.
    Kornfeld, Jack E.
    Nogales, Eva
    Doudna, Jennifer A.
    MOLECULAR CELL, 2016, 63 (05) : 840 - 851
  • [26] CRISPR-Cas systems and RNA-guided interference
    Barrangou, Rodolphe
    WILEY INTERDISCIPLINARY REVIEWS-RNA, 2013, 4 (03) : 267 - 278
  • [27] CRISPR: Groundbreaking technology for RNA-guided genome engineering
    Cong, Le
    ANALYTICAL BIOCHEMISTRY, 2017, 532 : 87 - 89
  • [28] CRISPR RNA-guided activation of endogenous human genes
    Maeder, Morgan L.
    Linder, Samantha J.
    Cascio, Vincent M.
    Fu, Yanfang
    Ho, Quan H.
    Joung, J. Keith
    NATURE METHODS, 2013, 10 (10) : 977 - +
  • [29] The history and market impact of CRISPR RNA-guided nucleases
    van Erp, Paul B. G.
    Bloomer, Gary
    Wilkinson, Royce
    Wiedenheft, Blake
    CURRENT OPINION IN VIROLOGY, 2015, 12 : 85 - 90
  • [30] Structures and mechanisms of CRISPR RNA-guided effector nucleases
    Nishimasu, Hiroshi
    Nureki, Osamu
    CURRENT OPINION IN STRUCTURAL BIOLOGY, 2017, 43 : 68 - 78