Lattice modulation spectroscopy of one-dimensional quantum gases: Universal scaling of the absorbed energy

被引:8
作者
Citro, R. [1 ,2 ,3 ]
Demler, E. [4 ]
Giamarchi, T. [5 ]
Knap, M. [6 ,7 ,8 ]
Orignac, E. [9 ]
机构
[1] Univ Salerno, Dipartimento Fis ER Caianiello, Via Giovanni Paolo II 132, I-84084 Salerno, Italy
[2] Univ Salerno, CNR SPIN, Via Giovanni Paolo II 132, I-84084 Salerno, Italy
[3] Grp Collegato Salerno, Sez Napoli, Ist Nazl Fis Nucl, I-84084 Salerno, Italy
[4] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
[5] Univ Geneva, DQMP, 24 Quai Ernest Ansermet, CH-1211 Geneva, Switzerland
[6] Tech Univ Munich, Dept Phys, D-85748 Garching, Germany
[7] Tech Univ Munich, Inst Adv Study, D-85748 Garching, Germany
[8] Munich Ctr Quantum Sci & Technol, Schellingstr 4, D-80799 Munich, Germany
[9] Univ Lyon, Univ Claude Bernard, Lab Phys, CNRS,ENS Lyon, F-69342 Lyon, France
来源
PHYSICAL REVIEW RESEARCH | 2020年 / 2卷 / 03期
基金
欧洲研究理事会; 瑞士国家科学基金会;
关键词
EXACT FORM-FACTORS; RENORMALIZATION-GROUP; PHASE-TRANSITION; FIELD THEORIES; SPIN; INSULATOR; MODEL; OSCILLATIONS; MAGNETISM; FERMIONS;
D O I
10.1103/PhysRevResearch.2.033187
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Lattice modulation spectroscopy is a powerful tool for probing low-energy excitations of interacting many-body systems. By means of bosonization we analyze the absorbed power in a one-dimensional interacting quantum gas of bosons or fermions, subjected to a periodic drive of the optical lattice. For these Tomonaga-Luttinger liquids we find a universal omega(3) scaling of the absorbed power, which at very low-frequency turns into an omega(2) scaling when scattering processes at the boundary of the system are taken into account. We confirm this behavior numerically by simulations based on time-dependent matrix product states. Furthermore, in the presence of impurities, the theory predicts an omega(2) bulk scaling. While typical response functions of Tomonaga-Luttinger liquids are characterized by exponents that depend on the interaction strength, modulation spectroscopy of cold atoms leads to a universal power-law exponent of the absorbed power. Our findings can be readily demonstrated in ultracold atoms in optical lattices with current experimental technology.
引用
收藏
页数:14
相关论文
共 74 条
[41]   Modulation spectroscopy with ultracold fermions in an optical lattice [J].
Kollath, C. ;
Iucci, A. ;
McCulloch, I. P. ;
Giamarchi, T. .
PHYSICAL REVIEW A, 2006, 74 (04)
[42]   Spectroscopy of ultracold atoms by periodic lattice modulations [J].
Kollath, C. ;
Iucci, A. ;
Giamarchi, T. ;
Hofstetter, W. ;
Schollwoeck, U. .
PHYSICAL REVIEW LETTERS, 2006, 97 (05)
[43]   Quantum electrodynamics of a superconductor-insulator phase transition [J].
Kuzmin, R. ;
Mencia, R. ;
Grabon, N. ;
Mehta, N. ;
Lin, Y-H ;
Manucharyan, V. E. .
NATURE PHYSICS, 2019, 15 (09) :930-+
[44]   Dynamical Casimir effect in a Josephson metamaterial [J].
Lahteenmaki, Pasi ;
Paraoanu, G. S. ;
Hassel, Juha ;
Hakonen, Pertti J. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2013, 110 (11) :4234-4238
[45]  
Landau L, 1959, THEORY ELASTICITY
[46]  
Lauchli A.M., ARXIV13030741
[47]   BACKWARD SCATTERING IN ONE-DIMENSIONAL ELECTRON-GAS [J].
LUTHER, A ;
EMERY, VJ .
PHYSICAL REVIEW LETTERS, 1974, 33 (10) :589-592
[48]  
Nagaosa N., 1999, Quantum Field Theory in Strongly Correlated Electronic Systems, DOI [10.1007/978-3-662-03795-9, DOI 10.1007/978-3-662-03795-9]
[49]   Faraday patterns in two-dimensional dipolar Bose-Einstein condensates [J].
Nath, R. ;
Santos, L. .
PHYSICAL REVIEW A, 2010, 81 (03)
[50]   Amplitude/Higgs Modes in Condensed Matter Physics [J].
Pekker, David ;
Varma, C. M. .
ANNUAL REVIEW OF CONDENSED MATTER PHYSICS, VOL 6, 2015, 6 :269-297