Quantitative three-dimensional microstructure of a solid oxide fuel cell cathode

被引:147
作者
Wilson, James R. [1 ]
Duong, Anh T. [2 ]
Gameiro, Marcio [3 ]
Chen, Hsun-Yi [4 ]
Thornton, Katsuyo [4 ]
Mumm, Daniel R. [2 ]
Barnett, Scott A. [1 ]
机构
[1] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA
[2] Univ Calif Irvine, Dept Chem Engn & Mat Sci, Irvine, CA 92697 USA
[3] Kyoto Univ, Dept Math, Kyoto 6068502, Japan
[4] Univ Michigan, Dept Mat Sci & Engn, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会;
关键词
SOFC; Microstructure; FIB-SEM; Nanotomography; Cathodes; LSM-YSZ; YTTRIA-STABILIZED ZIRCONIA; YSZ COMPOSITE CATHODES; IMPEDANCE SPECTROSCOPY; AC-IMPEDANCE; PERFORMANCE; POLARIZATION; ANODE; RECONSTRUCTION; TEMPERATURE; ELECTROLYTE;
D O I
10.1016/j.elecom.2009.03.010
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Solid oxide fuel cells (SOFCs) are being actively developed world wide for clean and efficient electrical generation from fuels such as natural gas, hydrogen, coal, and gasoline. The cathode in state of the art SOFCs is typically a porous composite of electronically-conducting La(1-x)Sr(x)MnO(3) (LSM) and ionically-conducting Y(2)O(3)-stabilized ZrO(2) (YSZ) that facilitates the critical oxygen reduction reaction. Here we describe the three-dimensional characterization and quantification of key structural parameters from an LSM-YSZ cathode, using imaging and volume reconstruction based on focused ion beam - scanning electron microscopy. LSM-YSZ-pore three-phase boundaries (TPBs) were identified. Approximately 1/3 of the TPBs were found to be electrochemically inactive, as they were on isolated LSM particles, yielding an active TPB density of 4.9 mu m(-2). Cathode electrochemical modeling, which included a measured YSZ tortuosity of 3.4, yielded an effective TPB resistance of approximate to 2.5 x 10(5) Omega cm at 800 degrees C. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:1052 / 1056
页数:5
相关论文
共 33 条
  • [31] Fundamental mechanisms limiting solid oxide fuel cell durability
    Yokokawa, Harumi
    Tu, Hengyong
    Iwanschitz, Boris
    Mai, Andreas
    [J]. JOURNAL OF POWER SOURCES, 2008, 182 (02) : 400 - 412
  • [32] A bi-layered composite cathode of La0.8Sr0.2MnO3-YSZ and La0.8Sr0.2MnO3-La0.4Ce0.6O1.8 for IT-SOFCs
    Zhang, Min
    Yang, Min
    Hou, Zhifang
    Dong, Yonglai
    Cheng, Mojie
    [J]. ELECTROCHIMICA ACTA, 2008, 53 (15) : 4998 - 5006
  • [33] ZHAO F, 2001, SOLID OXIDE FUEL CEL, V7