Fredholm determinants, Jimbo-Miwa-Ueno π-functions, and representation theory

被引:83
作者
Borodin, A
Deift, P
机构
[1] Inst Adv Study, Sch Math, Princeton, NJ 08540 USA
[2] NYU, Courant Inst, New York, NY 10012 USA
关键词
D O I
10.1002/cpa.10042
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The authors show that a wide class of Fredholm determinants arising in the representation theory of "big" groups, Such as the infinite-dimensional unitary group. solve Painleve equations. Their methods are based on the theory of integrable operators and the theory, of Riemann-Hilbert problems. (C) 2002 Wiley Periodicals. Inc.
引用
收藏
页码:1160 / 1230
页数:71
相关论文
共 65 条
[1]   Hermitian, symmetric and symplectic random ensembles: PDEs for the distribution of the spectrum [J].
Adler, M ;
van Moerbeke, P .
ANNALS OF MATHEMATICS, 2001, 153 (01) :149-189
[2]   Random matrices, Virasoro algebras, and noncommutative KP [J].
Adler, M ;
Shiota, T ;
Van Moerbeke, P .
DUKE MATHEMATICAL JOURNAL, 1998, 94 (02) :379-431
[3]  
[Anonymous], AM MATH SOC TRANSLAT
[4]  
[Anonymous], 2001, MATH SCI RES I PUBLI
[5]  
[Anonymous], 2013, INTRO THEORY POINT P
[6]   On the distribution of the length of the longest increasing subsequence of random permutations [J].
Baik, J ;
Deift, P ;
Johansson, K .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 12 (04) :1119-1178
[7]   On the distribution of the length of the second row of a young diagram under Plancherel measure [J].
Baik, J ;
Deift, P ;
Johansson, K .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2000, 10 (04) :702-731
[8]   Asymptotics of Plancherel measures for symmetric groups [J].
Borodin, A ;
Okounkov, A ;
Olshanski, G .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 13 (03) :481-515
[9]  
Borodin A, 1998, MATH RES LETT, V5, P799
[10]   Riemann-Hilbert problem and the discrete Bessel kernel [J].
Borodin, A .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2000, 2000 (09) :467-494